| /*! | |
| * decimal.js v10.4.3 | |
| * An arbitrary-precision Decimal type for JavaScript. | |
| * https://github.com/MikeMcl/decimal.js | |
| * Copyright (c) 2022 Michael Mclaughlin <M8ch88l@gmail.com> | |
| * MIT Licence | |
| */ | |
| // ----------------------------------- EDITABLE DEFAULTS ------------------------------------ // | |
| // The maximum exponent magnitude. | |
| // The limit on the value of `toExpNeg`, `toExpPos`, `minE` and `maxE`. | |
| var EXP_LIMIT = 9e15, // 0 to 9e15 | |
| // The limit on the value of `precision`, and on the value of the first argument to | |
| // `toDecimalPlaces`, `toExponential`, `toFixed`, `toPrecision` and `toSignificantDigits`. | |
| MAX_DIGITS = 1e9, // 0 to 1e9 | |
| // Base conversion alphabet. | |
| NUMERALS = '0123456789abcdef', | |
| // The natural logarithm of 10 (1025 digits). | |
| LN10 = '2.3025850929940456840179914546843642076011014886287729760333279009675726096773524802359972050895982983419677840422862486334095254650828067566662873690987816894829072083255546808437998948262331985283935053089653777326288461633662222876982198867465436674744042432743651550489343149393914796194044002221051017141748003688084012647080685567743216228355220114804663715659121373450747856947683463616792101806445070648000277502684916746550586856935673420670581136429224554405758925724208241314695689016758940256776311356919292033376587141660230105703089634572075440370847469940168269282808481184289314848524948644871927809676271275775397027668605952496716674183485704422507197965004714951050492214776567636938662976979522110718264549734772662425709429322582798502585509785265383207606726317164309505995087807523710333101197857547331541421808427543863591778117054309827482385045648019095610299291824318237525357709750539565187697510374970888692180205189339507238539205144634197265287286965110862571492198849978748873771345686209167058', | |
| // Pi (1025 digits). | |
| PI = '3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989380952572010654858632789', | |
| // The initial configuration properties of the Decimal constructor. | |
| DEFAULTS = { | |
| // These values must be integers within the stated ranges (inclusive). | |
| // Most of these values can be changed at run-time using the `Decimal.config` method. | |
| // The maximum number of significant digits of the result of a calculation or base conversion. | |
| // E.g. `Decimal.config({ precision: 20 });` | |
| precision: 20, // 1 to MAX_DIGITS | |
| // The rounding mode used when rounding to `precision`. | |
| // | |
| // ROUND_UP 0 Away from zero. | |
| // ROUND_DOWN 1 Towards zero. | |
| // ROUND_CEIL 2 Towards +Infinity. | |
| // ROUND_FLOOR 3 Towards -Infinity. | |
| // ROUND_HALF_UP 4 Towards nearest neighbour. If equidistant, up. | |
| // ROUND_HALF_DOWN 5 Towards nearest neighbour. If equidistant, down. | |
| // ROUND_HALF_EVEN 6 Towards nearest neighbour. If equidistant, towards even neighbour. | |
| // ROUND_HALF_CEIL 7 Towards nearest neighbour. If equidistant, towards +Infinity. | |
| // ROUND_HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity. | |
| // | |
| // E.g. | |
| // `Decimal.rounding = 4;` | |
| // `Decimal.rounding = Decimal.ROUND_HALF_UP;` | |
| rounding: 4, // 0 to 8 | |
| // The modulo mode used when calculating the modulus: a mod n. | |
| // The quotient (q = a / n) is calculated according to the corresponding rounding mode. | |
| // The remainder (r) is calculated as: r = a - n * q. | |
| // | |
| // UP 0 The remainder is positive if the dividend is negative, else is negative. | |
| // DOWN 1 The remainder has the same sign as the dividend (JavaScript %). | |
| // FLOOR 3 The remainder has the same sign as the divisor (Python %). | |
| // HALF_EVEN 6 The IEEE 754 remainder function. | |
| // EUCLID 9 Euclidian division. q = sign(n) * floor(a / abs(n)). Always positive. | |
| // | |
| // Truncated division (1), floored division (3), the IEEE 754 remainder (6), and Euclidian | |
| // division (9) are commonly used for the modulus operation. The other rounding modes can also | |
| // be used, but they may not give useful results. | |
| modulo: 1, // 0 to 9 | |
| // The exponent value at and beneath which `toString` returns exponential notation. | |
| // JavaScript numbers: -7 | |
| toExpNeg: -7, // 0 to -EXP_LIMIT | |
| // The exponent value at and above which `toString` returns exponential notation. | |
| // JavaScript numbers: 21 | |
| toExpPos: 21, // 0 to EXP_LIMIT | |
| // The minimum exponent value, beneath which underflow to zero occurs. | |
| // JavaScript numbers: -324 (5e-324) | |
| minE: -EXP_LIMIT, // -1 to -EXP_LIMIT | |
| // The maximum exponent value, above which overflow to Infinity occurs. | |
| // JavaScript numbers: 308 (1.7976931348623157e+308) | |
| maxE: EXP_LIMIT, // 1 to EXP_LIMIT | |
| // Whether to use cryptographically-secure random number generation, if available. | |
| crypto: false // true/false | |
| }, | |
| // ----------------------------------- END OF EDITABLE DEFAULTS ------------------------------- // | |
| inexact, quadrant, | |
| external = true, | |
| decimalError = '[DecimalError] ', | |
| invalidArgument = decimalError + 'Invalid argument: ', | |
| precisionLimitExceeded = decimalError + 'Precision limit exceeded', | |
| cryptoUnavailable = decimalError + 'crypto unavailable', | |
| tag = '[object Decimal]', | |
| mathfloor = Math.floor, | |
| mathpow = Math.pow, | |
| isBinary = /^0b([01]+(\.[01]*)?|\.[01]+)(p[+-]?\d+)?$/i, | |
| isHex = /^0x([0-9a-f]+(\.[0-9a-f]*)?|\.[0-9a-f]+)(p[+-]?\d+)?$/i, | |
| isOctal = /^0o([0-7]+(\.[0-7]*)?|\.[0-7]+)(p[+-]?\d+)?$/i, | |
| isDecimal = /^(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i, | |
| BASE = 1e7, | |
| LOG_BASE = 7, | |
| MAX_SAFE_INTEGER = 9007199254740991, | |
| LN10_PRECISION = LN10.length - 1, | |
| PI_PRECISION = PI.length - 1, | |
| // Decimal.prototype object | |
| P = { toStringTag: tag }; | |
| // Decimal prototype methods | |
| /* | |
| * absoluteValue abs | |
| * ceil | |
| * clampedTo clamp | |
| * comparedTo cmp | |
| * cosine cos | |
| * cubeRoot cbrt | |
| * decimalPlaces dp | |
| * dividedBy div | |
| * dividedToIntegerBy divToInt | |
| * equals eq | |
| * floor | |
| * greaterThan gt | |
| * greaterThanOrEqualTo gte | |
| * hyperbolicCosine cosh | |
| * hyperbolicSine sinh | |
| * hyperbolicTangent tanh | |
| * inverseCosine acos | |
| * inverseHyperbolicCosine acosh | |
| * inverseHyperbolicSine asinh | |
| * inverseHyperbolicTangent atanh | |
| * inverseSine asin | |
| * inverseTangent atan | |
| * isFinite | |
| * isInteger isInt | |
| * isNaN | |
| * isNegative isNeg | |
| * isPositive isPos | |
| * isZero | |
| * lessThan lt | |
| * lessThanOrEqualTo lte | |
| * logarithm log | |
| * [maximum] [max] | |
| * [minimum] [min] | |
| * minus sub | |
| * modulo mod | |
| * naturalExponential exp | |
| * naturalLogarithm ln | |
| * negated neg | |
| * plus add | |
| * precision sd | |
| * round | |
| * sine sin | |
| * squareRoot sqrt | |
| * tangent tan | |
| * times mul | |
| * toBinary | |
| * toDecimalPlaces toDP | |
| * toExponential | |
| * toFixed | |
| * toFraction | |
| * toHexadecimal toHex | |
| * toNearest | |
| * toNumber | |
| * toOctal | |
| * toPower pow | |
| * toPrecision | |
| * toSignificantDigits toSD | |
| * toString | |
| * truncated trunc | |
| * valueOf toJSON | |
| */ | |
| /* | |
| * Return a new Decimal whose value is the absolute value of this Decimal. | |
| * | |
| */ | |
| P.absoluteValue = P.abs = function () { | |
| var x = new this.constructor(this); | |
| if (x.s < 0) x.s = 1; | |
| return finalise(x); | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the value of this Decimal rounded to a whole number in the | |
| * direction of positive Infinity. | |
| * | |
| */ | |
| P.ceil = function () { | |
| return finalise(new this.constructor(this), this.e + 1, 2); | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the value of this Decimal clamped to the range | |
| * delineated by `min` and `max`. | |
| * | |
| * min {number|string|Decimal} | |
| * max {number|string|Decimal} | |
| * | |
| */ | |
| P.clampedTo = P.clamp = function (min, max) { | |
| var k, | |
| x = this, | |
| Ctor = x.constructor; | |
| min = new Ctor(min); | |
| max = new Ctor(max); | |
| if (!min.s || !max.s) return new Ctor(NaN); | |
| if (min.gt(max)) throw Error(invalidArgument + max); | |
| k = x.cmp(min); | |
| return k < 0 ? min : x.cmp(max) > 0 ? max : new Ctor(x); | |
| }; | |
| /* | |
| * Return | |
| * 1 if the value of this Decimal is greater than the value of `y`, | |
| * -1 if the value of this Decimal is less than the value of `y`, | |
| * 0 if they have the same value, | |
| * NaN if the value of either Decimal is NaN. | |
| * | |
| */ | |
| P.comparedTo = P.cmp = function (y) { | |
| var i, j, xdL, ydL, | |
| x = this, | |
| xd = x.d, | |
| yd = (y = new x.constructor(y)).d, | |
| xs = x.s, | |
| ys = y.s; | |
| // Either NaN or ±Infinity? | |
| if (!xd || !yd) { | |
| return !xs || !ys ? NaN : xs !== ys ? xs : xd === yd ? 0 : !xd ^ xs < 0 ? 1 : -1; | |
| } | |
| // Either zero? | |
| if (!xd[0] || !yd[0]) return xd[0] ? xs : yd[0] ? -ys : 0; | |
| // Signs differ? | |
| if (xs !== ys) return xs; | |
| // Compare exponents. | |
| if (x.e !== y.e) return x.e > y.e ^ xs < 0 ? 1 : -1; | |
| xdL = xd.length; | |
| ydL = yd.length; | |
| // Compare digit by digit. | |
| for (i = 0, j = xdL < ydL ? xdL : ydL; i < j; ++i) { | |
| if (xd[i] !== yd[i]) return xd[i] > yd[i] ^ xs < 0 ? 1 : -1; | |
| } | |
| // Compare lengths. | |
| return xdL === ydL ? 0 : xdL > ydL ^ xs < 0 ? 1 : -1; | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the cosine of the value in radians of this Decimal. | |
| * | |
| * Domain: [-Infinity, Infinity] | |
| * Range: [-1, 1] | |
| * | |
| * cos(0) = 1 | |
| * cos(-0) = 1 | |
| * cos(Infinity) = NaN | |
| * cos(-Infinity) = NaN | |
| * cos(NaN) = NaN | |
| * | |
| */ | |
| P.cosine = P.cos = function () { | |
| var pr, rm, | |
| x = this, | |
| Ctor = x.constructor; | |
| if (!x.d) return new Ctor(NaN); | |
| // cos(0) = cos(-0) = 1 | |
| if (!x.d[0]) return new Ctor(1); | |
| pr = Ctor.precision; | |
| rm = Ctor.rounding; | |
| Ctor.precision = pr + Math.max(x.e, x.sd()) + LOG_BASE; | |
| Ctor.rounding = 1; | |
| x = cosine(Ctor, toLessThanHalfPi(Ctor, x)); | |
| Ctor.precision = pr; | |
| Ctor.rounding = rm; | |
| return finalise(quadrant == 2 || quadrant == 3 ? x.neg() : x, pr, rm, true); | |
| }; | |
| /* | |
| * | |
| * Return a new Decimal whose value is the cube root of the value of this Decimal, rounded to | |
| * `precision` significant digits using rounding mode `rounding`. | |
| * | |
| * cbrt(0) = 0 | |
| * cbrt(-0) = -0 | |
| * cbrt(1) = 1 | |
| * cbrt(-1) = -1 | |
| * cbrt(N) = N | |
| * cbrt(-I) = -I | |
| * cbrt(I) = I | |
| * | |
| * Math.cbrt(x) = (x < 0 ? -Math.pow(-x, 1/3) : Math.pow(x, 1/3)) | |
| * | |
| */ | |
| P.cubeRoot = P.cbrt = function () { | |
| var e, m, n, r, rep, s, sd, t, t3, t3plusx, | |
| x = this, | |
| Ctor = x.constructor; | |
| if (!x.isFinite() || x.isZero()) return new Ctor(x); | |
| external = false; | |
| // Initial estimate. | |
| s = x.s * mathpow(x.s * x, 1 / 3); | |
| // Math.cbrt underflow/overflow? | |
| // Pass x to Math.pow as integer, then adjust the exponent of the result. | |
| if (!s || Math.abs(s) == 1 / 0) { | |
| n = digitsToString(x.d); | |
| e = x.e; | |
| // Adjust n exponent so it is a multiple of 3 away from x exponent. | |
| if (s = (e - n.length + 1) % 3) n += (s == 1 || s == -2 ? '0' : '00'); | |
| s = mathpow(n, 1 / 3); | |
| // Rarely, e may be one less than the result exponent value. | |
| e = mathfloor((e + 1) / 3) - (e % 3 == (e < 0 ? -1 : 2)); | |
| if (s == 1 / 0) { | |
| n = '5e' + e; | |
| } else { | |
| n = s.toExponential(); | |
| n = n.slice(0, n.indexOf('e') + 1) + e; | |
| } | |
| r = new Ctor(n); | |
| r.s = x.s; | |
| } else { | |
| r = new Ctor(s.toString()); | |
| } | |
| sd = (e = Ctor.precision) + 3; | |
| // Halley's method. | |
| // TODO? Compare Newton's method. | |
| for (;;) { | |
| t = r; | |
| t3 = t.times(t).times(t); | |
| t3plusx = t3.plus(x); | |
| r = divide(t3plusx.plus(x).times(t), t3plusx.plus(t3), sd + 2, 1); | |
| // TODO? Replace with for-loop and checkRoundingDigits. | |
| if (digitsToString(t.d).slice(0, sd) === (n = digitsToString(r.d)).slice(0, sd)) { | |
| n = n.slice(sd - 3, sd + 1); | |
| // The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or 4999 | |
| // , i.e. approaching a rounding boundary, continue the iteration. | |
| if (n == '9999' || !rep && n == '4999') { | |
| // On the first iteration only, check to see if rounding up gives the exact result as the | |
| // nines may infinitely repeat. | |
| if (!rep) { | |
| finalise(t, e + 1, 0); | |
| if (t.times(t).times(t).eq(x)) { | |
| r = t; | |
| break; | |
| } | |
| } | |
| sd += 4; | |
| rep = 1; | |
| } else { | |
| // If the rounding digits are null, 0{0,4} or 50{0,3}, check for an exact result. | |
| // If not, then there are further digits and m will be truthy. | |
| if (!+n || !+n.slice(1) && n.charAt(0) == '5') { | |
| // Truncate to the first rounding digit. | |
| finalise(r, e + 1, 1); | |
| m = !r.times(r).times(r).eq(x); | |
| } | |
| break; | |
| } | |
| } | |
| } | |
| external = true; | |
| return finalise(r, e, Ctor.rounding, m); | |
| }; | |
| /* | |
| * Return the number of decimal places of the value of this Decimal. | |
| * | |
| */ | |
| P.decimalPlaces = P.dp = function () { | |
| var w, | |
| d = this.d, | |
| n = NaN; | |
| if (d) { | |
| w = d.length - 1; | |
| n = (w - mathfloor(this.e / LOG_BASE)) * LOG_BASE; | |
| // Subtract the number of trailing zeros of the last word. | |
| w = d[w]; | |
| if (w) for (; w % 10 == 0; w /= 10) n--; | |
| if (n < 0) n = 0; | |
| } | |
| return n; | |
| }; | |
| /* | |
| * n / 0 = I | |
| * n / N = N | |
| * n / I = 0 | |
| * 0 / n = 0 | |
| * 0 / 0 = N | |
| * 0 / N = N | |
| * 0 / I = 0 | |
| * N / n = N | |
| * N / 0 = N | |
| * N / N = N | |
| * N / I = N | |
| * I / n = I | |
| * I / 0 = I | |
| * I / N = N | |
| * I / I = N | |
| * | |
| * Return a new Decimal whose value is the value of this Decimal divided by `y`, rounded to | |
| * `precision` significant digits using rounding mode `rounding`. | |
| * | |
| */ | |
| P.dividedBy = P.div = function (y) { | |
| return divide(this, new this.constructor(y)); | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the integer part of dividing the value of this Decimal | |
| * by the value of `y`, rounded to `precision` significant digits using rounding mode `rounding`. | |
| * | |
| */ | |
| P.dividedToIntegerBy = P.divToInt = function (y) { | |
| var x = this, | |
| Ctor = x.constructor; | |
| return finalise(divide(x, new Ctor(y), 0, 1, 1), Ctor.precision, Ctor.rounding); | |
| }; | |
| /* | |
| * Return true if the value of this Decimal is equal to the value of `y`, otherwise return false. | |
| * | |
| */ | |
| P.equals = P.eq = function (y) { | |
| return this.cmp(y) === 0; | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the value of this Decimal rounded to a whole number in the | |
| * direction of negative Infinity. | |
| * | |
| */ | |
| P.floor = function () { | |
| return finalise(new this.constructor(this), this.e + 1, 3); | |
| }; | |
| /* | |
| * Return true if the value of this Decimal is greater than the value of `y`, otherwise return | |
| * false. | |
| * | |
| */ | |
| P.greaterThan = P.gt = function (y) { | |
| return this.cmp(y) > 0; | |
| }; | |
| /* | |
| * Return true if the value of this Decimal is greater than or equal to the value of `y`, | |
| * otherwise return false. | |
| * | |
| */ | |
| P.greaterThanOrEqualTo = P.gte = function (y) { | |
| var k = this.cmp(y); | |
| return k == 1 || k === 0; | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the hyperbolic cosine of the value in radians of this | |
| * Decimal. | |
| * | |
| * Domain: [-Infinity, Infinity] | |
| * Range: [1, Infinity] | |
| * | |
| * cosh(x) = 1 + x^2/2! + x^4/4! + x^6/6! + ... | |
| * | |
| * cosh(0) = 1 | |
| * cosh(-0) = 1 | |
| * cosh(Infinity) = Infinity | |
| * cosh(-Infinity) = Infinity | |
| * cosh(NaN) = NaN | |
| * | |
| * x time taken (ms) result | |
| * 1000 9 9.8503555700852349694e+433 | |
| * 10000 25 4.4034091128314607936e+4342 | |
| * 100000 171 1.4033316802130615897e+43429 | |
| * 1000000 3817 1.5166076984010437725e+434294 | |
| * 10000000 abandoned after 2 minute wait | |
| * | |
| * TODO? Compare performance of cosh(x) = 0.5 * (exp(x) + exp(-x)) | |
| * | |
| */ | |
| P.hyperbolicCosine = P.cosh = function () { | |
| var k, n, pr, rm, len, | |
| x = this, | |
| Ctor = x.constructor, | |
| one = new Ctor(1); | |
| if (!x.isFinite()) return new Ctor(x.s ? 1 / 0 : NaN); | |
| if (x.isZero()) return one; | |
| pr = Ctor.precision; | |
| rm = Ctor.rounding; | |
| Ctor.precision = pr + Math.max(x.e, x.sd()) + 4; | |
| Ctor.rounding = 1; | |
| len = x.d.length; | |
| // Argument reduction: cos(4x) = 1 - 8cos^2(x) + 8cos^4(x) + 1 | |
| // i.e. cos(x) = 1 - cos^2(x/4)(8 - 8cos^2(x/4)) | |
| // Estimate the optimum number of times to use the argument reduction. | |
| // TODO? Estimation reused from cosine() and may not be optimal here. | |
| if (len < 32) { | |
| k = Math.ceil(len / 3); | |
| n = (1 / tinyPow(4, k)).toString(); | |
| } else { | |
| k = 16; | |
| n = '2.3283064365386962890625e-10'; | |
| } | |
| x = taylorSeries(Ctor, 1, x.times(n), new Ctor(1), true); | |
| // Reverse argument reduction | |
| var cosh2_x, | |
| i = k, | |
| d8 = new Ctor(8); | |
| for (; i--;) { | |
| cosh2_x = x.times(x); | |
| x = one.minus(cosh2_x.times(d8.minus(cosh2_x.times(d8)))); | |
| } | |
| return finalise(x, Ctor.precision = pr, Ctor.rounding = rm, true); | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the hyperbolic sine of the value in radians of this | |
| * Decimal. | |
| * | |
| * Domain: [-Infinity, Infinity] | |
| * Range: [-Infinity, Infinity] | |
| * | |
| * sinh(x) = x + x^3/3! + x^5/5! + x^7/7! + ... | |
| * | |
| * sinh(0) = 0 | |
| * sinh(-0) = -0 | |
| * sinh(Infinity) = Infinity | |
| * sinh(-Infinity) = -Infinity | |
| * sinh(NaN) = NaN | |
| * | |
| * x time taken (ms) | |
| * 10 2 ms | |
| * 100 5 ms | |
| * 1000 14 ms | |
| * 10000 82 ms | |
| * 100000 886 ms 1.4033316802130615897e+43429 | |
| * 200000 2613 ms | |
| * 300000 5407 ms | |
| * 400000 8824 ms | |
| * 500000 13026 ms 8.7080643612718084129e+217146 | |
| * 1000000 48543 ms | |
| * | |
| * TODO? Compare performance of sinh(x) = 0.5 * (exp(x) - exp(-x)) | |
| * | |
| */ | |
| P.hyperbolicSine = P.sinh = function () { | |
| var k, pr, rm, len, | |
| x = this, | |
| Ctor = x.constructor; | |
| if (!x.isFinite() || x.isZero()) return new Ctor(x); | |
| pr = Ctor.precision; | |
| rm = Ctor.rounding; | |
| Ctor.precision = pr + Math.max(x.e, x.sd()) + 4; | |
| Ctor.rounding = 1; | |
| len = x.d.length; | |
| if (len < 3) { | |
| x = taylorSeries(Ctor, 2, x, x, true); | |
| } else { | |
| // Alternative argument reduction: sinh(3x) = sinh(x)(3 + 4sinh^2(x)) | |
| // i.e. sinh(x) = sinh(x/3)(3 + 4sinh^2(x/3)) | |
| // 3 multiplications and 1 addition | |
| // Argument reduction: sinh(5x) = sinh(x)(5 + sinh^2(x)(20 + 16sinh^2(x))) | |
| // i.e. sinh(x) = sinh(x/5)(5 + sinh^2(x/5)(20 + 16sinh^2(x/5))) | |
| // 4 multiplications and 2 additions | |
| // Estimate the optimum number of times to use the argument reduction. | |
| k = 1.4 * Math.sqrt(len); | |
| k = k > 16 ? 16 : k | 0; | |
| x = x.times(1 / tinyPow(5, k)); | |
| x = taylorSeries(Ctor, 2, x, x, true); | |
| // Reverse argument reduction | |
| var sinh2_x, | |
| d5 = new Ctor(5), | |
| d16 = new Ctor(16), | |
| d20 = new Ctor(20); | |
| for (; k--;) { | |
| sinh2_x = x.times(x); | |
| x = x.times(d5.plus(sinh2_x.times(d16.times(sinh2_x).plus(d20)))); | |
| } | |
| } | |
| Ctor.precision = pr; | |
| Ctor.rounding = rm; | |
| return finalise(x, pr, rm, true); | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the hyperbolic tangent of the value in radians of this | |
| * Decimal. | |
| * | |
| * Domain: [-Infinity, Infinity] | |
| * Range: [-1, 1] | |
| * | |
| * tanh(x) = sinh(x) / cosh(x) | |
| * | |
| * tanh(0) = 0 | |
| * tanh(-0) = -0 | |
| * tanh(Infinity) = 1 | |
| * tanh(-Infinity) = -1 | |
| * tanh(NaN) = NaN | |
| * | |
| */ | |
| P.hyperbolicTangent = P.tanh = function () { | |
| var pr, rm, | |
| x = this, | |
| Ctor = x.constructor; | |
| if (!x.isFinite()) return new Ctor(x.s); | |
| if (x.isZero()) return new Ctor(x); | |
| pr = Ctor.precision; | |
| rm = Ctor.rounding; | |
| Ctor.precision = pr + 7; | |
| Ctor.rounding = 1; | |
| return divide(x.sinh(), x.cosh(), Ctor.precision = pr, Ctor.rounding = rm); | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the arccosine (inverse cosine) in radians of the value of | |
| * this Decimal. | |
| * | |
| * Domain: [-1, 1] | |
| * Range: [0, pi] | |
| * | |
| * acos(x) = pi/2 - asin(x) | |
| * | |
| * acos(0) = pi/2 | |
| * acos(-0) = pi/2 | |
| * acos(1) = 0 | |
| * acos(-1) = pi | |
| * acos(1/2) = pi/3 | |
| * acos(-1/2) = 2*pi/3 | |
| * acos(|x| > 1) = NaN | |
| * acos(NaN) = NaN | |
| * | |
| */ | |
| P.inverseCosine = P.acos = function () { | |
| var halfPi, | |
| x = this, | |
| Ctor = x.constructor, | |
| k = x.abs().cmp(1), | |
| pr = Ctor.precision, | |
| rm = Ctor.rounding; | |
| if (k !== -1) { | |
| return k === 0 | |
| // |x| is 1 | |
| ? x.isNeg() ? getPi(Ctor, pr, rm) : new Ctor(0) | |
| // |x| > 1 or x is NaN | |
| : new Ctor(NaN); | |
| } | |
| if (x.isZero()) return getPi(Ctor, pr + 4, rm).times(0.5); | |
| // TODO? Special case acos(0.5) = pi/3 and acos(-0.5) = 2*pi/3 | |
| Ctor.precision = pr + 6; | |
| Ctor.rounding = 1; | |
| x = x.asin(); | |
| halfPi = getPi(Ctor, pr + 4, rm).times(0.5); | |
| Ctor.precision = pr; | |
| Ctor.rounding = rm; | |
| return halfPi.minus(x); | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the inverse of the hyperbolic cosine in radians of the | |
| * value of this Decimal. | |
| * | |
| * Domain: [1, Infinity] | |
| * Range: [0, Infinity] | |
| * | |
| * acosh(x) = ln(x + sqrt(x^2 - 1)) | |
| * | |
| * acosh(x < 1) = NaN | |
| * acosh(NaN) = NaN | |
| * acosh(Infinity) = Infinity | |
| * acosh(-Infinity) = NaN | |
| * acosh(0) = NaN | |
| * acosh(-0) = NaN | |
| * acosh(1) = 0 | |
| * acosh(-1) = NaN | |
| * | |
| */ | |
| P.inverseHyperbolicCosine = P.acosh = function () { | |
| var pr, rm, | |
| x = this, | |
| Ctor = x.constructor; | |
| if (x.lte(1)) return new Ctor(x.eq(1) ? 0 : NaN); | |
| if (!x.isFinite()) return new Ctor(x); | |
| pr = Ctor.precision; | |
| rm = Ctor.rounding; | |
| Ctor.precision = pr + Math.max(Math.abs(x.e), x.sd()) + 4; | |
| Ctor.rounding = 1; | |
| external = false; | |
| x = x.times(x).minus(1).sqrt().plus(x); | |
| external = true; | |
| Ctor.precision = pr; | |
| Ctor.rounding = rm; | |
| return x.ln(); | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the inverse of the hyperbolic sine in radians of the value | |
| * of this Decimal. | |
| * | |
| * Domain: [-Infinity, Infinity] | |
| * Range: [-Infinity, Infinity] | |
| * | |
| * asinh(x) = ln(x + sqrt(x^2 + 1)) | |
| * | |
| * asinh(NaN) = NaN | |
| * asinh(Infinity) = Infinity | |
| * asinh(-Infinity) = -Infinity | |
| * asinh(0) = 0 | |
| * asinh(-0) = -0 | |
| * | |
| */ | |
| P.inverseHyperbolicSine = P.asinh = function () { | |
| var pr, rm, | |
| x = this, | |
| Ctor = x.constructor; | |
| if (!x.isFinite() || x.isZero()) return new Ctor(x); | |
| pr = Ctor.precision; | |
| rm = Ctor.rounding; | |
| Ctor.precision = pr + 2 * Math.max(Math.abs(x.e), x.sd()) + 6; | |
| Ctor.rounding = 1; | |
| external = false; | |
| x = x.times(x).plus(1).sqrt().plus(x); | |
| external = true; | |
| Ctor.precision = pr; | |
| Ctor.rounding = rm; | |
| return x.ln(); | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the inverse of the hyperbolic tangent in radians of the | |
| * value of this Decimal. | |
| * | |
| * Domain: [-1, 1] | |
| * Range: [-Infinity, Infinity] | |
| * | |
| * atanh(x) = 0.5 * ln((1 + x) / (1 - x)) | |
| * | |
| * atanh(|x| > 1) = NaN | |
| * atanh(NaN) = NaN | |
| * atanh(Infinity) = NaN | |
| * atanh(-Infinity) = NaN | |
| * atanh(0) = 0 | |
| * atanh(-0) = -0 | |
| * atanh(1) = Infinity | |
| * atanh(-1) = -Infinity | |
| * | |
| */ | |
| P.inverseHyperbolicTangent = P.atanh = function () { | |
| var pr, rm, wpr, xsd, | |
| x = this, | |
| Ctor = x.constructor; | |
| if (!x.isFinite()) return new Ctor(NaN); | |
| if (x.e >= 0) return new Ctor(x.abs().eq(1) ? x.s / 0 : x.isZero() ? x : NaN); | |
| pr = Ctor.precision; | |
| rm = Ctor.rounding; | |
| xsd = x.sd(); | |
| if (Math.max(xsd, pr) < 2 * -x.e - 1) return finalise(new Ctor(x), pr, rm, true); | |
| Ctor.precision = wpr = xsd - x.e; | |
| x = divide(x.plus(1), new Ctor(1).minus(x), wpr + pr, 1); | |
| Ctor.precision = pr + 4; | |
| Ctor.rounding = 1; | |
| x = x.ln(); | |
| Ctor.precision = pr; | |
| Ctor.rounding = rm; | |
| return x.times(0.5); | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the arcsine (inverse sine) in radians of the value of this | |
| * Decimal. | |
| * | |
| * Domain: [-Infinity, Infinity] | |
| * Range: [-pi/2, pi/2] | |
| * | |
| * asin(x) = 2*atan(x/(1 + sqrt(1 - x^2))) | |
| * | |
| * asin(0) = 0 | |
| * asin(-0) = -0 | |
| * asin(1/2) = pi/6 | |
| * asin(-1/2) = -pi/6 | |
| * asin(1) = pi/2 | |
| * asin(-1) = -pi/2 | |
| * asin(|x| > 1) = NaN | |
| * asin(NaN) = NaN | |
| * | |
| * TODO? Compare performance of Taylor series. | |
| * | |
| */ | |
| P.inverseSine = P.asin = function () { | |
| var halfPi, k, | |
| pr, rm, | |
| x = this, | |
| Ctor = x.constructor; | |
| if (x.isZero()) return new Ctor(x); | |
| k = x.abs().cmp(1); | |
| pr = Ctor.precision; | |
| rm = Ctor.rounding; | |
| if (k !== -1) { | |
| // |x| is 1 | |
| if (k === 0) { | |
| halfPi = getPi(Ctor, pr + 4, rm).times(0.5); | |
| halfPi.s = x.s; | |
| return halfPi; | |
| } | |
| // |x| > 1 or x is NaN | |
| return new Ctor(NaN); | |
| } | |
| // TODO? Special case asin(1/2) = pi/6 and asin(-1/2) = -pi/6 | |
| Ctor.precision = pr + 6; | |
| Ctor.rounding = 1; | |
| x = x.div(new Ctor(1).minus(x.times(x)).sqrt().plus(1)).atan(); | |
| Ctor.precision = pr; | |
| Ctor.rounding = rm; | |
| return x.times(2); | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the arctangent (inverse tangent) in radians of the value | |
| * of this Decimal. | |
| * | |
| * Domain: [-Infinity, Infinity] | |
| * Range: [-pi/2, pi/2] | |
| * | |
| * atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ... | |
| * | |
| * atan(0) = 0 | |
| * atan(-0) = -0 | |
| * atan(1) = pi/4 | |
| * atan(-1) = -pi/4 | |
| * atan(Infinity) = pi/2 | |
| * atan(-Infinity) = -pi/2 | |
| * atan(NaN) = NaN | |
| * | |
| */ | |
| P.inverseTangent = P.atan = function () { | |
| var i, j, k, n, px, t, r, wpr, x2, | |
| x = this, | |
| Ctor = x.constructor, | |
| pr = Ctor.precision, | |
| rm = Ctor.rounding; | |
| if (!x.isFinite()) { | |
| if (!x.s) return new Ctor(NaN); | |
| if (pr + 4 <= PI_PRECISION) { | |
| r = getPi(Ctor, pr + 4, rm).times(0.5); | |
| r.s = x.s; | |
| return r; | |
| } | |
| } else if (x.isZero()) { | |
| return new Ctor(x); | |
| } else if (x.abs().eq(1) && pr + 4 <= PI_PRECISION) { | |
| r = getPi(Ctor, pr + 4, rm).times(0.25); | |
| r.s = x.s; | |
| return r; | |
| } | |
| Ctor.precision = wpr = pr + 10; | |
| Ctor.rounding = 1; | |
| // TODO? if (x >= 1 && pr <= PI_PRECISION) atan(x) = halfPi * x.s - atan(1 / x); | |
| // Argument reduction | |
| // Ensure |x| < 0.42 | |
| // atan(x) = 2 * atan(x / (1 + sqrt(1 + x^2))) | |
| k = Math.min(28, wpr / LOG_BASE + 2 | 0); | |
| for (i = k; i; --i) x = x.div(x.times(x).plus(1).sqrt().plus(1)); | |
| external = false; | |
| j = Math.ceil(wpr / LOG_BASE); | |
| n = 1; | |
| x2 = x.times(x); | |
| r = new Ctor(x); | |
| px = x; | |
| // atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ... | |
| for (; i !== -1;) { | |
| px = px.times(x2); | |
| t = r.minus(px.div(n += 2)); | |
| px = px.times(x2); | |
| r = t.plus(px.div(n += 2)); | |
| if (r.d[j] !== void 0) for (i = j; r.d[i] === t.d[i] && i--;); | |
| } | |
| if (k) r = r.times(2 << (k - 1)); | |
| external = true; | |
| return finalise(r, Ctor.precision = pr, Ctor.rounding = rm, true); | |
| }; | |
| /* | |
| * Return true if the value of this Decimal is a finite number, otherwise return false. | |
| * | |
| */ | |
| P.isFinite = function () { | |
| return !!this.d; | |
| }; | |
| /* | |
| * Return true if the value of this Decimal is an integer, otherwise return false. | |
| * | |
| */ | |
| P.isInteger = P.isInt = function () { | |
| return !!this.d && mathfloor(this.e / LOG_BASE) > this.d.length - 2; | |
| }; | |
| /* | |
| * Return true if the value of this Decimal is NaN, otherwise return false. | |
| * | |
| */ | |
| P.isNaN = function () { | |
| return !this.s; | |
| }; | |
| /* | |
| * Return true if the value of this Decimal is negative, otherwise return false. | |
| * | |
| */ | |
| P.isNegative = P.isNeg = function () { | |
| return this.s < 0; | |
| }; | |
| /* | |
| * Return true if the value of this Decimal is positive, otherwise return false. | |
| * | |
| */ | |
| P.isPositive = P.isPos = function () { | |
| return this.s > 0; | |
| }; | |
| /* | |
| * Return true if the value of this Decimal is 0 or -0, otherwise return false. | |
| * | |
| */ | |
| P.isZero = function () { | |
| return !!this.d && this.d[0] === 0; | |
| }; | |
| /* | |
| * Return true if the value of this Decimal is less than `y`, otherwise return false. | |
| * | |
| */ | |
| P.lessThan = P.lt = function (y) { | |
| return this.cmp(y) < 0; | |
| }; | |
| /* | |
| * Return true if the value of this Decimal is less than or equal to `y`, otherwise return false. | |
| * | |
| */ | |
| P.lessThanOrEqualTo = P.lte = function (y) { | |
| return this.cmp(y) < 1; | |
| }; | |
| /* | |
| * Return the logarithm of the value of this Decimal to the specified base, rounded to `precision` | |
| * significant digits using rounding mode `rounding`. | |
| * | |
| * If no base is specified, return log[10](arg). | |
| * | |
| * log[base](arg) = ln(arg) / ln(base) | |
| * | |
| * The result will always be correctly rounded if the base of the log is 10, and 'almost always' | |
| * otherwise: | |
| * | |
| * Depending on the rounding mode, the result may be incorrectly rounded if the first fifteen | |
| * rounding digits are [49]99999999999999 or [50]00000000000000. In that case, the maximum error | |
| * between the result and the correctly rounded result will be one ulp (unit in the last place). | |
| * | |
| * log[-b](a) = NaN | |
| * log[0](a) = NaN | |
| * log[1](a) = NaN | |
| * log[NaN](a) = NaN | |
| * log[Infinity](a) = NaN | |
| * log[b](0) = -Infinity | |
| * log[b](-0) = -Infinity | |
| * log[b](-a) = NaN | |
| * log[b](1) = 0 | |
| * log[b](Infinity) = Infinity | |
| * log[b](NaN) = NaN | |
| * | |
| * [base] {number|string|Decimal} The base of the logarithm. | |
| * | |
| */ | |
| P.logarithm = P.log = function (base) { | |
| var isBase10, d, denominator, k, inf, num, sd, r, | |
| arg = this, | |
| Ctor = arg.constructor, | |
| pr = Ctor.precision, | |
| rm = Ctor.rounding, | |
| guard = 5; | |
| // Default base is 10. | |
| if (base == null) { | |
| base = new Ctor(10); | |
| isBase10 = true; | |
| } else { | |
| base = new Ctor(base); | |
| d = base.d; | |
| // Return NaN if base is negative, or non-finite, or is 0 or 1. | |
| if (base.s < 0 || !d || !d[0] || base.eq(1)) return new Ctor(NaN); | |
| isBase10 = base.eq(10); | |
| } | |
| d = arg.d; | |
| // Is arg negative, non-finite, 0 or 1? | |
| if (arg.s < 0 || !d || !d[0] || arg.eq(1)) { | |
| return new Ctor(d && !d[0] ? -1 / 0 : arg.s != 1 ? NaN : d ? 0 : 1 / 0); | |
| } | |
| // The result will have a non-terminating decimal expansion if base is 10 and arg is not an | |
| // integer power of 10. | |
| if (isBase10) { | |
| if (d.length > 1) { | |
| inf = true; | |
| } else { | |
| for (k = d[0]; k % 10 === 0;) k /= 10; | |
| inf = k !== 1; | |
| } | |
| } | |
| external = false; | |
| sd = pr + guard; | |
| num = naturalLogarithm(arg, sd); | |
| denominator = isBase10 ? getLn10(Ctor, sd + 10) : naturalLogarithm(base, sd); | |
| // The result will have 5 rounding digits. | |
| r = divide(num, denominator, sd, 1); | |
| // If at a rounding boundary, i.e. the result's rounding digits are [49]9999 or [50]0000, | |
| // calculate 10 further digits. | |
| // | |
| // If the result is known to have an infinite decimal expansion, repeat this until it is clear | |
| // that the result is above or below the boundary. Otherwise, if after calculating the 10 | |
| // further digits, the last 14 are nines, round up and assume the result is exact. | |
| // Also assume the result is exact if the last 14 are zero. | |
| // | |
| // Example of a result that will be incorrectly rounded: | |
| // log[1048576](4503599627370502) = 2.60000000000000009610279511444746... | |
| // The above result correctly rounded using ROUND_CEIL to 1 decimal place should be 2.7, but it | |
| // will be given as 2.6 as there are 15 zeros immediately after the requested decimal place, so | |
| // the exact result would be assumed to be 2.6, which rounded using ROUND_CEIL to 1 decimal | |
| // place is still 2.6. | |
| if (checkRoundingDigits(r.d, k = pr, rm)) { | |
| do { | |
| sd += 10; | |
| num = naturalLogarithm(arg, sd); | |
| denominator = isBase10 ? getLn10(Ctor, sd + 10) : naturalLogarithm(base, sd); | |
| r = divide(num, denominator, sd, 1); | |
| if (!inf) { | |
| // Check for 14 nines from the 2nd rounding digit, as the first may be 4. | |
| if (+digitsToString(r.d).slice(k + 1, k + 15) + 1 == 1e14) { | |
| r = finalise(r, pr + 1, 0); | |
| } | |
| break; | |
| } | |
| } while (checkRoundingDigits(r.d, k += 10, rm)); | |
| } | |
| external = true; | |
| return finalise(r, pr, rm); | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the maximum of the arguments and the value of this Decimal. | |
| * | |
| * arguments {number|string|Decimal} | |
| * | |
| P.max = function () { | |
| Array.prototype.push.call(arguments, this); | |
| return maxOrMin(this.constructor, arguments, 'lt'); | |
| }; | |
| */ | |
| /* | |
| * Return a new Decimal whose value is the minimum of the arguments and the value of this Decimal. | |
| * | |
| * arguments {number|string|Decimal} | |
| * | |
| P.min = function () { | |
| Array.prototype.push.call(arguments, this); | |
| return maxOrMin(this.constructor, arguments, 'gt'); | |
| }; | |
| */ | |
| /* | |
| * n - 0 = n | |
| * n - N = N | |
| * n - I = -I | |
| * 0 - n = -n | |
| * 0 - 0 = 0 | |
| * 0 - N = N | |
| * 0 - I = -I | |
| * N - n = N | |
| * N - 0 = N | |
| * N - N = N | |
| * N - I = N | |
| * I - n = I | |
| * I - 0 = I | |
| * I - N = N | |
| * I - I = N | |
| * | |
| * Return a new Decimal whose value is the value of this Decimal minus `y`, rounded to `precision` | |
| * significant digits using rounding mode `rounding`. | |
| * | |
| */ | |
| P.minus = P.sub = function (y) { | |
| var d, e, i, j, k, len, pr, rm, xd, xe, xLTy, yd, | |
| x = this, | |
| Ctor = x.constructor; | |
| y = new Ctor(y); | |
| // If either is not finite... | |
| if (!x.d || !y.d) { | |
| // Return NaN if either is NaN. | |
| if (!x.s || !y.s) y = new Ctor(NaN); | |
| // Return y negated if x is finite and y is ±Infinity. | |
| else if (x.d) y.s = -y.s; | |
| // Return x if y is finite and x is ±Infinity. | |
| // Return x if both are ±Infinity with different signs. | |
| // Return NaN if both are ±Infinity with the same sign. | |
| else y = new Ctor(y.d || x.s !== y.s ? x : NaN); | |
| return y; | |
| } | |
| // If signs differ... | |
| if (x.s != y.s) { | |
| y.s = -y.s; | |
| return x.plus(y); | |
| } | |
| xd = x.d; | |
| yd = y.d; | |
| pr = Ctor.precision; | |
| rm = Ctor.rounding; | |
| // If either is zero... | |
| if (!xd[0] || !yd[0]) { | |
| // Return y negated if x is zero and y is non-zero. | |
| if (yd[0]) y.s = -y.s; | |
| // Return x if y is zero and x is non-zero. | |
| else if (xd[0]) y = new Ctor(x); | |
| // Return zero if both are zero. | |
| // From IEEE 754 (2008) 6.3: 0 - 0 = -0 - -0 = -0 when rounding to -Infinity. | |
| else return new Ctor(rm === 3 ? -0 : 0); | |
| return external ? finalise(y, pr, rm) : y; | |
| } | |
| // x and y are finite, non-zero numbers with the same sign. | |
| // Calculate base 1e7 exponents. | |
| e = mathfloor(y.e / LOG_BASE); | |
| xe = mathfloor(x.e / LOG_BASE); | |
| xd = xd.slice(); | |
| k = xe - e; | |
| // If base 1e7 exponents differ... | |
| if (k) { | |
| xLTy = k < 0; | |
| if (xLTy) { | |
| d = xd; | |
| k = -k; | |
| len = yd.length; | |
| } else { | |
| d = yd; | |
| e = xe; | |
| len = xd.length; | |
| } | |
| // Numbers with massively different exponents would result in a very high number of | |
| // zeros needing to be prepended, but this can be avoided while still ensuring correct | |
| // rounding by limiting the number of zeros to `Math.ceil(pr / LOG_BASE) + 2`. | |
| i = Math.max(Math.ceil(pr / LOG_BASE), len) + 2; | |
| if (k > i) { | |
| k = i; | |
| d.length = 1; | |
| } | |
| // Prepend zeros to equalise exponents. | |
| d.reverse(); | |
| for (i = k; i--;) d.push(0); | |
| d.reverse(); | |
| // Base 1e7 exponents equal. | |
| } else { | |
| // Check digits to determine which is the bigger number. | |
| i = xd.length; | |
| len = yd.length; | |
| xLTy = i < len; | |
| if (xLTy) len = i; | |
| for (i = 0; i < len; i++) { | |
| if (xd[i] != yd[i]) { | |
| xLTy = xd[i] < yd[i]; | |
| break; | |
| } | |
| } | |
| k = 0; | |
| } | |
| if (xLTy) { | |
| d = xd; | |
| xd = yd; | |
| yd = d; | |
| y.s = -y.s; | |
| } | |
| len = xd.length; | |
| // Append zeros to `xd` if shorter. | |
| // Don't add zeros to `yd` if shorter as subtraction only needs to start at `yd` length. | |
| for (i = yd.length - len; i > 0; --i) xd[len++] = 0; | |
| // Subtract yd from xd. | |
| for (i = yd.length; i > k;) { | |
| if (xd[--i] < yd[i]) { | |
| for (j = i; j && xd[--j] === 0;) xd[j] = BASE - 1; | |
| --xd[j]; | |
| xd[i] += BASE; | |
| } | |
| xd[i] -= yd[i]; | |
| } | |
| // Remove trailing zeros. | |
| for (; xd[--len] === 0;) xd.pop(); | |
| // Remove leading zeros and adjust exponent accordingly. | |
| for (; xd[0] === 0; xd.shift()) --e; | |
| // Zero? | |
| if (!xd[0]) return new Ctor(rm === 3 ? -0 : 0); | |
| y.d = xd; | |
| y.e = getBase10Exponent(xd, e); | |
| return external ? finalise(y, pr, rm) : y; | |
| }; | |
| /* | |
| * n % 0 = N | |
| * n % N = N | |
| * n % I = n | |
| * 0 % n = 0 | |
| * -0 % n = -0 | |
| * 0 % 0 = N | |
| * 0 % N = N | |
| * 0 % I = 0 | |
| * N % n = N | |
| * N % 0 = N | |
| * N % N = N | |
| * N % I = N | |
| * I % n = N | |
| * I % 0 = N | |
| * I % N = N | |
| * I % I = N | |
| * | |
| * Return a new Decimal whose value is the value of this Decimal modulo `y`, rounded to | |
| * `precision` significant digits using rounding mode `rounding`. | |
| * | |
| * The result depends on the modulo mode. | |
| * | |
| */ | |
| P.modulo = P.mod = function (y) { | |
| var q, | |
| x = this, | |
| Ctor = x.constructor; | |
| y = new Ctor(y); | |
| // Return NaN if x is ±Infinity or NaN, or y is NaN or ±0. | |
| if (!x.d || !y.s || y.d && !y.d[0]) return new Ctor(NaN); | |
| // Return x if y is ±Infinity or x is ±0. | |
| if (!y.d || x.d && !x.d[0]) { | |
| return finalise(new Ctor(x), Ctor.precision, Ctor.rounding); | |
| } | |
| // Prevent rounding of intermediate calculations. | |
| external = false; | |
| if (Ctor.modulo == 9) { | |
| // Euclidian division: q = sign(y) * floor(x / abs(y)) | |
| // result = x - q * y where 0 <= result < abs(y) | |
| q = divide(x, y.abs(), 0, 3, 1); | |
| q.s *= y.s; | |
| } else { | |
| q = divide(x, y, 0, Ctor.modulo, 1); | |
| } | |
| q = q.times(y); | |
| external = true; | |
| return x.minus(q); | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the natural exponential of the value of this Decimal, | |
| * i.e. the base e raised to the power the value of this Decimal, rounded to `precision` | |
| * significant digits using rounding mode `rounding`. | |
| * | |
| */ | |
| P.naturalExponential = P.exp = function () { | |
| return naturalExponential(this); | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the natural logarithm of the value of this Decimal, | |
| * rounded to `precision` significant digits using rounding mode `rounding`. | |
| * | |
| */ | |
| P.naturalLogarithm = P.ln = function () { | |
| return naturalLogarithm(this); | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the value of this Decimal negated, i.e. as if multiplied by | |
| * -1. | |
| * | |
| */ | |
| P.negated = P.neg = function () { | |
| var x = new this.constructor(this); | |
| x.s = -x.s; | |
| return finalise(x); | |
| }; | |
| /* | |
| * n + 0 = n | |
| * n + N = N | |
| * n + I = I | |
| * 0 + n = n | |
| * 0 + 0 = 0 | |
| * 0 + N = N | |
| * 0 + I = I | |
| * N + n = N | |
| * N + 0 = N | |
| * N + N = N | |
| * N + I = N | |
| * I + n = I | |
| * I + 0 = I | |
| * I + N = N | |
| * I + I = I | |
| * | |
| * Return a new Decimal whose value is the value of this Decimal plus `y`, rounded to `precision` | |
| * significant digits using rounding mode `rounding`. | |
| * | |
| */ | |
| P.plus = P.add = function (y) { | |
| var carry, d, e, i, k, len, pr, rm, xd, yd, | |
| x = this, | |
| Ctor = x.constructor; | |
| y = new Ctor(y); | |
| // If either is not finite... | |
| if (!x.d || !y.d) { | |
| // Return NaN if either is NaN. | |
| if (!x.s || !y.s) y = new Ctor(NaN); | |
| // Return x if y is finite and x is ±Infinity. | |
| // Return x if both are ±Infinity with the same sign. | |
| // Return NaN if both are ±Infinity with different signs. | |
| // Return y if x is finite and y is ±Infinity. | |
| else if (!x.d) y = new Ctor(y.d || x.s === y.s ? x : NaN); | |
| return y; | |
| } | |
| // If signs differ... | |
| if (x.s != y.s) { | |
| y.s = -y.s; | |
| return x.minus(y); | |
| } | |
| xd = x.d; | |
| yd = y.d; | |
| pr = Ctor.precision; | |
| rm = Ctor.rounding; | |
| // If either is zero... | |
| if (!xd[0] || !yd[0]) { | |
| // Return x if y is zero. | |
| // Return y if y is non-zero. | |
| if (!yd[0]) y = new Ctor(x); | |
| return external ? finalise(y, pr, rm) : y; | |
| } | |
| // x and y are finite, non-zero numbers with the same sign. | |
| // Calculate base 1e7 exponents. | |
| k = mathfloor(x.e / LOG_BASE); | |
| e = mathfloor(y.e / LOG_BASE); | |
| xd = xd.slice(); | |
| i = k - e; | |
| // If base 1e7 exponents differ... | |
| if (i) { | |
| if (i < 0) { | |
| d = xd; | |
| i = -i; | |
| len = yd.length; | |
| } else { | |
| d = yd; | |
| e = k; | |
| len = xd.length; | |
| } | |
| // Limit number of zeros prepended to max(ceil(pr / LOG_BASE), len) + 1. | |
| k = Math.ceil(pr / LOG_BASE); | |
| len = k > len ? k + 1 : len + 1; | |
| if (i > len) { | |
| i = len; | |
| d.length = 1; | |
| } | |
| // Prepend zeros to equalise exponents. Note: Faster to use reverse then do unshifts. | |
| d.reverse(); | |
| for (; i--;) d.push(0); | |
| d.reverse(); | |
| } | |
| len = xd.length; | |
| i = yd.length; | |
| // If yd is longer than xd, swap xd and yd so xd points to the longer array. | |
| if (len - i < 0) { | |
| i = len; | |
| d = yd; | |
| yd = xd; | |
| xd = d; | |
| } | |
| // Only start adding at yd.length - 1 as the further digits of xd can be left as they are. | |
| for (carry = 0; i;) { | |
| carry = (xd[--i] = xd[i] + yd[i] + carry) / BASE | 0; | |
| xd[i] %= BASE; | |
| } | |
| if (carry) { | |
| xd.unshift(carry); | |
| ++e; | |
| } | |
| // Remove trailing zeros. | |
| // No need to check for zero, as +x + +y != 0 && -x + -y != 0 | |
| for (len = xd.length; xd[--len] == 0;) xd.pop(); | |
| y.d = xd; | |
| y.e = getBase10Exponent(xd, e); | |
| return external ? finalise(y, pr, rm) : y; | |
| }; | |
| /* | |
| * Return the number of significant digits of the value of this Decimal. | |
| * | |
| * [z] {boolean|number} Whether to count integer-part trailing zeros: true, false, 1 or 0. | |
| * | |
| */ | |
| P.precision = P.sd = function (z) { | |
| var k, | |
| x = this; | |
| if (z !== void 0 && z !== !!z && z !== 1 && z !== 0) throw Error(invalidArgument + z); | |
| if (x.d) { | |
| k = getPrecision(x.d); | |
| if (z && x.e + 1 > k) k = x.e + 1; | |
| } else { | |
| k = NaN; | |
| } | |
| return k; | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the value of this Decimal rounded to a whole number using | |
| * rounding mode `rounding`. | |
| * | |
| */ | |
| P.round = function () { | |
| var x = this, | |
| Ctor = x.constructor; | |
| return finalise(new Ctor(x), x.e + 1, Ctor.rounding); | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the sine of the value in radians of this Decimal. | |
| * | |
| * Domain: [-Infinity, Infinity] | |
| * Range: [-1, 1] | |
| * | |
| * sin(x) = x - x^3/3! + x^5/5! - ... | |
| * | |
| * sin(0) = 0 | |
| * sin(-0) = -0 | |
| * sin(Infinity) = NaN | |
| * sin(-Infinity) = NaN | |
| * sin(NaN) = NaN | |
| * | |
| */ | |
| P.sine = P.sin = function () { | |
| var pr, rm, | |
| x = this, | |
| Ctor = x.constructor; | |
| if (!x.isFinite()) return new Ctor(NaN); | |
| if (x.isZero()) return new Ctor(x); | |
| pr = Ctor.precision; | |
| rm = Ctor.rounding; | |
| Ctor.precision = pr + Math.max(x.e, x.sd()) + LOG_BASE; | |
| Ctor.rounding = 1; | |
| x = sine(Ctor, toLessThanHalfPi(Ctor, x)); | |
| Ctor.precision = pr; | |
| Ctor.rounding = rm; | |
| return finalise(quadrant > 2 ? x.neg() : x, pr, rm, true); | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the square root of this Decimal, rounded to `precision` | |
| * significant digits using rounding mode `rounding`. | |
| * | |
| * sqrt(-n) = N | |
| * sqrt(N) = N | |
| * sqrt(-I) = N | |
| * sqrt(I) = I | |
| * sqrt(0) = 0 | |
| * sqrt(-0) = -0 | |
| * | |
| */ | |
| P.squareRoot = P.sqrt = function () { | |
| var m, n, sd, r, rep, t, | |
| x = this, | |
| d = x.d, | |
| e = x.e, | |
| s = x.s, | |
| Ctor = x.constructor; | |
| // Negative/NaN/Infinity/zero? | |
| if (s !== 1 || !d || !d[0]) { | |
| return new Ctor(!s || s < 0 && (!d || d[0]) ? NaN : d ? x : 1 / 0); | |
| } | |
| external = false; | |
| // Initial estimate. | |
| s = Math.sqrt(+x); | |
| // Math.sqrt underflow/overflow? | |
| // Pass x to Math.sqrt as integer, then adjust the exponent of the result. | |
| if (s == 0 || s == 1 / 0) { | |
| n = digitsToString(d); | |
| if ((n.length + e) % 2 == 0) n += '0'; | |
| s = Math.sqrt(n); | |
| e = mathfloor((e + 1) / 2) - (e < 0 || e % 2); | |
| if (s == 1 / 0) { | |
| n = '5e' + e; | |
| } else { | |
| n = s.toExponential(); | |
| n = n.slice(0, n.indexOf('e') + 1) + e; | |
| } | |
| r = new Ctor(n); | |
| } else { | |
| r = new Ctor(s.toString()); | |
| } | |
| sd = (e = Ctor.precision) + 3; | |
| // Newton-Raphson iteration. | |
| for (;;) { | |
| t = r; | |
| r = t.plus(divide(x, t, sd + 2, 1)).times(0.5); | |
| // TODO? Replace with for-loop and checkRoundingDigits. | |
| if (digitsToString(t.d).slice(0, sd) === (n = digitsToString(r.d)).slice(0, sd)) { | |
| n = n.slice(sd - 3, sd + 1); | |
| // The 4th rounding digit may be in error by -1 so if the 4 rounding digits are 9999 or | |
| // 4999, i.e. approaching a rounding boundary, continue the iteration. | |
| if (n == '9999' || !rep && n == '4999') { | |
| // On the first iteration only, check to see if rounding up gives the exact result as the | |
| // nines may infinitely repeat. | |
| if (!rep) { | |
| finalise(t, e + 1, 0); | |
| if (t.times(t).eq(x)) { | |
| r = t; | |
| break; | |
| } | |
| } | |
| sd += 4; | |
| rep = 1; | |
| } else { | |
| // If the rounding digits are null, 0{0,4} or 50{0,3}, check for an exact result. | |
| // If not, then there are further digits and m will be truthy. | |
| if (!+n || !+n.slice(1) && n.charAt(0) == '5') { | |
| // Truncate to the first rounding digit. | |
| finalise(r, e + 1, 1); | |
| m = !r.times(r).eq(x); | |
| } | |
| break; | |
| } | |
| } | |
| } | |
| external = true; | |
| return finalise(r, e, Ctor.rounding, m); | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the tangent of the value in radians of this Decimal. | |
| * | |
| * Domain: [-Infinity, Infinity] | |
| * Range: [-Infinity, Infinity] | |
| * | |
| * tan(0) = 0 | |
| * tan(-0) = -0 | |
| * tan(Infinity) = NaN | |
| * tan(-Infinity) = NaN | |
| * tan(NaN) = NaN | |
| * | |
| */ | |
| P.tangent = P.tan = function () { | |
| var pr, rm, | |
| x = this, | |
| Ctor = x.constructor; | |
| if (!x.isFinite()) return new Ctor(NaN); | |
| if (x.isZero()) return new Ctor(x); | |
| pr = Ctor.precision; | |
| rm = Ctor.rounding; | |
| Ctor.precision = pr + 10; | |
| Ctor.rounding = 1; | |
| x = x.sin(); | |
| x.s = 1; | |
| x = divide(x, new Ctor(1).minus(x.times(x)).sqrt(), pr + 10, 0); | |
| Ctor.precision = pr; | |
| Ctor.rounding = rm; | |
| return finalise(quadrant == 2 || quadrant == 4 ? x.neg() : x, pr, rm, true); | |
| }; | |
| /* | |
| * n * 0 = 0 | |
| * n * N = N | |
| * n * I = I | |
| * 0 * n = 0 | |
| * 0 * 0 = 0 | |
| * 0 * N = N | |
| * 0 * I = N | |
| * N * n = N | |
| * N * 0 = N | |
| * N * N = N | |
| * N * I = N | |
| * I * n = I | |
| * I * 0 = N | |
| * I * N = N | |
| * I * I = I | |
| * | |
| * Return a new Decimal whose value is this Decimal times `y`, rounded to `precision` significant | |
| * digits using rounding mode `rounding`. | |
| * | |
| */ | |
| P.times = P.mul = function (y) { | |
| var carry, e, i, k, r, rL, t, xdL, ydL, | |
| x = this, | |
| Ctor = x.constructor, | |
| xd = x.d, | |
| yd = (y = new Ctor(y)).d; | |
| y.s *= x.s; | |
| // If either is NaN, ±Infinity or ±0... | |
| if (!xd || !xd[0] || !yd || !yd[0]) { | |
| return new Ctor(!y.s || xd && !xd[0] && !yd || yd && !yd[0] && !xd | |
| // Return NaN if either is NaN. | |
| // Return NaN if x is ±0 and y is ±Infinity, or y is ±0 and x is ±Infinity. | |
| ? NaN | |
| // Return ±Infinity if either is ±Infinity. | |
| // Return ±0 if either is ±0. | |
| : !xd || !yd ? y.s / 0 : y.s * 0); | |
| } | |
| e = mathfloor(x.e / LOG_BASE) + mathfloor(y.e / LOG_BASE); | |
| xdL = xd.length; | |
| ydL = yd.length; | |
| // Ensure xd points to the longer array. | |
| if (xdL < ydL) { | |
| r = xd; | |
| xd = yd; | |
| yd = r; | |
| rL = xdL; | |
| xdL = ydL; | |
| ydL = rL; | |
| } | |
| // Initialise the result array with zeros. | |
| r = []; | |
| rL = xdL + ydL; | |
| for (i = rL; i--;) r.push(0); | |
| // Multiply! | |
| for (i = ydL; --i >= 0;) { | |
| carry = 0; | |
| for (k = xdL + i; k > i;) { | |
| t = r[k] + yd[i] * xd[k - i - 1] + carry; | |
| r[k--] = t % BASE | 0; | |
| carry = t / BASE | 0; | |
| } | |
| r[k] = (r[k] + carry) % BASE | 0; | |
| } | |
| // Remove trailing zeros. | |
| for (; !r[--rL];) r.pop(); | |
| if (carry) ++e; | |
| else r.shift(); | |
| y.d = r; | |
| y.e = getBase10Exponent(r, e); | |
| return external ? finalise(y, Ctor.precision, Ctor.rounding) : y; | |
| }; | |
| /* | |
| * Return a string representing the value of this Decimal in base 2, round to `sd` significant | |
| * digits using rounding mode `rm`. | |
| * | |
| * If the optional `sd` argument is present then return binary exponential notation. | |
| * | |
| * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive. | |
| * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
| * | |
| */ | |
| P.toBinary = function (sd, rm) { | |
| return toStringBinary(this, 2, sd, rm); | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the value of this Decimal rounded to a maximum of `dp` | |
| * decimal places using rounding mode `rm` or `rounding` if `rm` is omitted. | |
| * | |
| * If `dp` is omitted, return a new Decimal whose value is the value of this Decimal. | |
| * | |
| * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive. | |
| * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
| * | |
| */ | |
| P.toDecimalPlaces = P.toDP = function (dp, rm) { | |
| var x = this, | |
| Ctor = x.constructor; | |
| x = new Ctor(x); | |
| if (dp === void 0) return x; | |
| checkInt32(dp, 0, MAX_DIGITS); | |
| if (rm === void 0) rm = Ctor.rounding; | |
| else checkInt32(rm, 0, 8); | |
| return finalise(x, dp + x.e + 1, rm); | |
| }; | |
| /* | |
| * Return a string representing the value of this Decimal in exponential notation rounded to | |
| * `dp` fixed decimal places using rounding mode `rounding`. | |
| * | |
| * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive. | |
| * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
| * | |
| */ | |
| P.toExponential = function (dp, rm) { | |
| var str, | |
| x = this, | |
| Ctor = x.constructor; | |
| if (dp === void 0) { | |
| str = finiteToString(x, true); | |
| } else { | |
| checkInt32(dp, 0, MAX_DIGITS); | |
| if (rm === void 0) rm = Ctor.rounding; | |
| else checkInt32(rm, 0, 8); | |
| x = finalise(new Ctor(x), dp + 1, rm); | |
| str = finiteToString(x, true, dp + 1); | |
| } | |
| return x.isNeg() && !x.isZero() ? '-' + str : str; | |
| }; | |
| /* | |
| * Return a string representing the value of this Decimal in normal (fixed-point) notation to | |
| * `dp` fixed decimal places and rounded using rounding mode `rm` or `rounding` if `rm` is | |
| * omitted. | |
| * | |
| * As with JavaScript numbers, (-0).toFixed(0) is '0', but e.g. (-0.00001).toFixed(0) is '-0'. | |
| * | |
| * [dp] {number} Decimal places. Integer, 0 to MAX_DIGITS inclusive. | |
| * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
| * | |
| * (-0).toFixed(0) is '0', but (-0.1).toFixed(0) is '-0'. | |
| * (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'. | |
| * (-0).toFixed(3) is '0.000'. | |
| * (-0.5).toFixed(0) is '-0'. | |
| * | |
| */ | |
| P.toFixed = function (dp, rm) { | |
| var str, y, | |
| x = this, | |
| Ctor = x.constructor; | |
| if (dp === void 0) { | |
| str = finiteToString(x); | |
| } else { | |
| checkInt32(dp, 0, MAX_DIGITS); | |
| if (rm === void 0) rm = Ctor.rounding; | |
| else checkInt32(rm, 0, 8); | |
| y = finalise(new Ctor(x), dp + x.e + 1, rm); | |
| str = finiteToString(y, false, dp + y.e + 1); | |
| } | |
| // To determine whether to add the minus sign look at the value before it was rounded, | |
| // i.e. look at `x` rather than `y`. | |
| return x.isNeg() && !x.isZero() ? '-' + str : str; | |
| }; | |
| /* | |
| * Return an array representing the value of this Decimal as a simple fraction with an integer | |
| * numerator and an integer denominator. | |
| * | |
| * The denominator will be a positive non-zero value less than or equal to the specified maximum | |
| * denominator. If a maximum denominator is not specified, the denominator will be the lowest | |
| * value necessary to represent the number exactly. | |
| * | |
| * [maxD] {number|string|Decimal} Maximum denominator. Integer >= 1 and < Infinity. | |
| * | |
| */ | |
| P.toFraction = function (maxD) { | |
| var d, d0, d1, d2, e, k, n, n0, n1, pr, q, r, | |
| x = this, | |
| xd = x.d, | |
| Ctor = x.constructor; | |
| if (!xd) return new Ctor(x); | |
| n1 = d0 = new Ctor(1); | |
| d1 = n0 = new Ctor(0); | |
| d = new Ctor(d1); | |
| e = d.e = getPrecision(xd) - x.e - 1; | |
| k = e % LOG_BASE; | |
| d.d[0] = mathpow(10, k < 0 ? LOG_BASE + k : k); | |
| if (maxD == null) { | |
| // d is 10**e, the minimum max-denominator needed. | |
| maxD = e > 0 ? d : n1; | |
| } else { | |
| n = new Ctor(maxD); | |
| if (!n.isInt() || n.lt(n1)) throw Error(invalidArgument + n); | |
| maxD = n.gt(d) ? (e > 0 ? d : n1) : n; | |
| } | |
| external = false; | |
| n = new Ctor(digitsToString(xd)); | |
| pr = Ctor.precision; | |
| Ctor.precision = e = xd.length * LOG_BASE * 2; | |
| for (;;) { | |
| q = divide(n, d, 0, 1, 1); | |
| d2 = d0.plus(q.times(d1)); | |
| if (d2.cmp(maxD) == 1) break; | |
| d0 = d1; | |
| d1 = d2; | |
| d2 = n1; | |
| n1 = n0.plus(q.times(d2)); | |
| n0 = d2; | |
| d2 = d; | |
| d = n.minus(q.times(d2)); | |
| n = d2; | |
| } | |
| d2 = divide(maxD.minus(d0), d1, 0, 1, 1); | |
| n0 = n0.plus(d2.times(n1)); | |
| d0 = d0.plus(d2.times(d1)); | |
| n0.s = n1.s = x.s; | |
| // Determine which fraction is closer to x, n0/d0 or n1/d1? | |
| r = divide(n1, d1, e, 1).minus(x).abs().cmp(divide(n0, d0, e, 1).minus(x).abs()) < 1 | |
| ? [n1, d1] : [n0, d0]; | |
| Ctor.precision = pr; | |
| external = true; | |
| return r; | |
| }; | |
| /* | |
| * Return a string representing the value of this Decimal in base 16, round to `sd` significant | |
| * digits using rounding mode `rm`. | |
| * | |
| * If the optional `sd` argument is present then return binary exponential notation. | |
| * | |
| * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive. | |
| * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
| * | |
| */ | |
| P.toHexadecimal = P.toHex = function (sd, rm) { | |
| return toStringBinary(this, 16, sd, rm); | |
| }; | |
| /* | |
| * Returns a new Decimal whose value is the nearest multiple of `y` in the direction of rounding | |
| * mode `rm`, or `Decimal.rounding` if `rm` is omitted, to the value of this Decimal. | |
| * | |
| * The return value will always have the same sign as this Decimal, unless either this Decimal | |
| * or `y` is NaN, in which case the return value will be also be NaN. | |
| * | |
| * The return value is not affected by the value of `precision`. | |
| * | |
| * y {number|string|Decimal} The magnitude to round to a multiple of. | |
| * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
| * | |
| * 'toNearest() rounding mode not an integer: {rm}' | |
| * 'toNearest() rounding mode out of range: {rm}' | |
| * | |
| */ | |
| P.toNearest = function (y, rm) { | |
| var x = this, | |
| Ctor = x.constructor; | |
| x = new Ctor(x); | |
| if (y == null) { | |
| // If x is not finite, return x. | |
| if (!x.d) return x; | |
| y = new Ctor(1); | |
| rm = Ctor.rounding; | |
| } else { | |
| y = new Ctor(y); | |
| if (rm === void 0) { | |
| rm = Ctor.rounding; | |
| } else { | |
| checkInt32(rm, 0, 8); | |
| } | |
| // If x is not finite, return x if y is not NaN, else NaN. | |
| if (!x.d) return y.s ? x : y; | |
| // If y is not finite, return Infinity with the sign of x if y is Infinity, else NaN. | |
| if (!y.d) { | |
| if (y.s) y.s = x.s; | |
| return y; | |
| } | |
| } | |
| // If y is not zero, calculate the nearest multiple of y to x. | |
| if (y.d[0]) { | |
| external = false; | |
| x = divide(x, y, 0, rm, 1).times(y); | |
| external = true; | |
| finalise(x); | |
| // If y is zero, return zero with the sign of x. | |
| } else { | |
| y.s = x.s; | |
| x = y; | |
| } | |
| return x; | |
| }; | |
| /* | |
| * Return the value of this Decimal converted to a number primitive. | |
| * Zero keeps its sign. | |
| * | |
| */ | |
| P.toNumber = function () { | |
| return +this; | |
| }; | |
| /* | |
| * Return a string representing the value of this Decimal in base 8, round to `sd` significant | |
| * digits using rounding mode `rm`. | |
| * | |
| * If the optional `sd` argument is present then return binary exponential notation. | |
| * | |
| * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive. | |
| * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
| * | |
| */ | |
| P.toOctal = function (sd, rm) { | |
| return toStringBinary(this, 8, sd, rm); | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the value of this Decimal raised to the power `y`, rounded | |
| * to `precision` significant digits using rounding mode `rounding`. | |
| * | |
| * ECMAScript compliant. | |
| * | |
| * pow(x, NaN) = NaN | |
| * pow(x, ±0) = 1 | |
| * pow(NaN, non-zero) = NaN | |
| * pow(abs(x) > 1, +Infinity) = +Infinity | |
| * pow(abs(x) > 1, -Infinity) = +0 | |
| * pow(abs(x) == 1, ±Infinity) = NaN | |
| * pow(abs(x) < 1, +Infinity) = +0 | |
| * pow(abs(x) < 1, -Infinity) = +Infinity | |
| * pow(+Infinity, y > 0) = +Infinity | |
| * pow(+Infinity, y < 0) = +0 | |
| * pow(-Infinity, odd integer > 0) = -Infinity | |
| * pow(-Infinity, even integer > 0) = +Infinity | |
| * pow(-Infinity, odd integer < 0) = -0 | |
| * pow(-Infinity, even integer < 0) = +0 | |
| * pow(+0, y > 0) = +0 | |
| * pow(+0, y < 0) = +Infinity | |
| * pow(-0, odd integer > 0) = -0 | |
| * pow(-0, even integer > 0) = +0 | |
| * pow(-0, odd integer < 0) = -Infinity | |
| * pow(-0, even integer < 0) = +Infinity | |
| * pow(finite x < 0, finite non-integer) = NaN | |
| * | |
| * For non-integer or very large exponents pow(x, y) is calculated using | |
| * | |
| * x^y = exp(y*ln(x)) | |
| * | |
| * Assuming the first 15 rounding digits are each equally likely to be any digit 0-9, the | |
| * probability of an incorrectly rounded result | |
| * P([49]9{14} | [50]0{14}) = 2 * 0.2 * 10^-14 = 4e-15 = 1/2.5e+14 | |
| * i.e. 1 in 250,000,000,000,000 | |
| * | |
| * If a result is incorrectly rounded the maximum error will be 1 ulp (unit in last place). | |
| * | |
| * y {number|string|Decimal} The power to which to raise this Decimal. | |
| * | |
| */ | |
| P.toPower = P.pow = function (y) { | |
| var e, k, pr, r, rm, s, | |
| x = this, | |
| Ctor = x.constructor, | |
| yn = +(y = new Ctor(y)); | |
| // Either ±Infinity, NaN or ±0? | |
| if (!x.d || !y.d || !x.d[0] || !y.d[0]) return new Ctor(mathpow(+x, yn)); | |
| x = new Ctor(x); | |
| if (x.eq(1)) return x; | |
| pr = Ctor.precision; | |
| rm = Ctor.rounding; | |
| if (y.eq(1)) return finalise(x, pr, rm); | |
| // y exponent | |
| e = mathfloor(y.e / LOG_BASE); | |
| // If y is a small integer use the 'exponentiation by squaring' algorithm. | |
| if (e >= y.d.length - 1 && (k = yn < 0 ? -yn : yn) <= MAX_SAFE_INTEGER) { | |
| r = intPow(Ctor, x, k, pr); | |
| return y.s < 0 ? new Ctor(1).div(r) : finalise(r, pr, rm); | |
| } | |
| s = x.s; | |
| // if x is negative | |
| if (s < 0) { | |
| // if y is not an integer | |
| if (e < y.d.length - 1) return new Ctor(NaN); | |
| // Result is positive if x is negative and the last digit of integer y is even. | |
| if ((y.d[e] & 1) == 0) s = 1; | |
| // if x.eq(-1) | |
| if (x.e == 0 && x.d[0] == 1 && x.d.length == 1) { | |
| x.s = s; | |
| return x; | |
| } | |
| } | |
| // Estimate result exponent. | |
| // x^y = 10^e, where e = y * log10(x) | |
| // log10(x) = log10(x_significand) + x_exponent | |
| // log10(x_significand) = ln(x_significand) / ln(10) | |
| k = mathpow(+x, yn); | |
| e = k == 0 || !isFinite(k) | |
| ? mathfloor(yn * (Math.log('0.' + digitsToString(x.d)) / Math.LN10 + x.e + 1)) | |
| : new Ctor(k + '').e; | |
| // Exponent estimate may be incorrect e.g. x: 0.999999999999999999, y: 2.29, e: 0, r.e: -1. | |
| // Overflow/underflow? | |
| if (e > Ctor.maxE + 1 || e < Ctor.minE - 1) return new Ctor(e > 0 ? s / 0 : 0); | |
| external = false; | |
| Ctor.rounding = x.s = 1; | |
| // Estimate the extra guard digits needed to ensure five correct rounding digits from | |
| // naturalLogarithm(x). Example of failure without these extra digits (precision: 10): | |
| // new Decimal(2.32456).pow('2087987436534566.46411') | |
| // should be 1.162377823e+764914905173815, but is 1.162355823e+764914905173815 | |
| k = Math.min(12, (e + '').length); | |
| // r = x^y = exp(y*ln(x)) | |
| r = naturalExponential(y.times(naturalLogarithm(x, pr + k)), pr); | |
| // r may be Infinity, e.g. (0.9999999999999999).pow(-1e+40) | |
| if (r.d) { | |
| // Truncate to the required precision plus five rounding digits. | |
| r = finalise(r, pr + 5, 1); | |
| // If the rounding digits are [49]9999 or [50]0000 increase the precision by 10 and recalculate | |
| // the result. | |
| if (checkRoundingDigits(r.d, pr, rm)) { | |
| e = pr + 10; | |
| // Truncate to the increased precision plus five rounding digits. | |
| r = finalise(naturalExponential(y.times(naturalLogarithm(x, e + k)), e), e + 5, 1); | |
| // Check for 14 nines from the 2nd rounding digit (the first rounding digit may be 4 or 9). | |
| if (+digitsToString(r.d).slice(pr + 1, pr + 15) + 1 == 1e14) { | |
| r = finalise(r, pr + 1, 0); | |
| } | |
| } | |
| } | |
| r.s = s; | |
| external = true; | |
| Ctor.rounding = rm; | |
| return finalise(r, pr, rm); | |
| }; | |
| /* | |
| * Return a string representing the value of this Decimal rounded to `sd` significant digits | |
| * using rounding mode `rounding`. | |
| * | |
| * Return exponential notation if `sd` is less than the number of digits necessary to represent | |
| * the integer part of the value in normal notation. | |
| * | |
| * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive. | |
| * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
| * | |
| */ | |
| P.toPrecision = function (sd, rm) { | |
| var str, | |
| x = this, | |
| Ctor = x.constructor; | |
| if (sd === void 0) { | |
| str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos); | |
| } else { | |
| checkInt32(sd, 1, MAX_DIGITS); | |
| if (rm === void 0) rm = Ctor.rounding; | |
| else checkInt32(rm, 0, 8); | |
| x = finalise(new Ctor(x), sd, rm); | |
| str = finiteToString(x, sd <= x.e || x.e <= Ctor.toExpNeg, sd); | |
| } | |
| return x.isNeg() && !x.isZero() ? '-' + str : str; | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the value of this Decimal rounded to a maximum of `sd` | |
| * significant digits using rounding mode `rm`, or to `precision` and `rounding` respectively if | |
| * omitted. | |
| * | |
| * [sd] {number} Significant digits. Integer, 1 to MAX_DIGITS inclusive. | |
| * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive. | |
| * | |
| * 'toSD() digits out of range: {sd}' | |
| * 'toSD() digits not an integer: {sd}' | |
| * 'toSD() rounding mode not an integer: {rm}' | |
| * 'toSD() rounding mode out of range: {rm}' | |
| * | |
| */ | |
| P.toSignificantDigits = P.toSD = function (sd, rm) { | |
| var x = this, | |
| Ctor = x.constructor; | |
| if (sd === void 0) { | |
| sd = Ctor.precision; | |
| rm = Ctor.rounding; | |
| } else { | |
| checkInt32(sd, 1, MAX_DIGITS); | |
| if (rm === void 0) rm = Ctor.rounding; | |
| else checkInt32(rm, 0, 8); | |
| } | |
| return finalise(new Ctor(x), sd, rm); | |
| }; | |
| /* | |
| * Return a string representing the value of this Decimal. | |
| * | |
| * Return exponential notation if this Decimal has a positive exponent equal to or greater than | |
| * `toExpPos`, or a negative exponent equal to or less than `toExpNeg`. | |
| * | |
| */ | |
| P.toString = function () { | |
| var x = this, | |
| Ctor = x.constructor, | |
| str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos); | |
| return x.isNeg() && !x.isZero() ? '-' + str : str; | |
| }; | |
| /* | |
| * Return a new Decimal whose value is the value of this Decimal truncated to a whole number. | |
| * | |
| */ | |
| P.truncated = P.trunc = function () { | |
| return finalise(new this.constructor(this), this.e + 1, 1); | |
| }; | |
| /* | |
| * Return a string representing the value of this Decimal. | |
| * Unlike `toString`, negative zero will include the minus sign. | |
| * | |
| */ | |
| P.valueOf = P.toJSON = function () { | |
| var x = this, | |
| Ctor = x.constructor, | |
| str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos); | |
| return x.isNeg() ? '-' + str : str; | |
| }; | |
| // Helper functions for Decimal.prototype (P) and/or Decimal methods, and their callers. | |
| /* | |
| * digitsToString P.cubeRoot, P.logarithm, P.squareRoot, P.toFraction, P.toPower, | |
| * finiteToString, naturalExponential, naturalLogarithm | |
| * checkInt32 P.toDecimalPlaces, P.toExponential, P.toFixed, P.toNearest, | |
| * P.toPrecision, P.toSignificantDigits, toStringBinary, random | |
| * checkRoundingDigits P.logarithm, P.toPower, naturalExponential, naturalLogarithm | |
| * convertBase toStringBinary, parseOther | |
| * cos P.cos | |
| * divide P.atanh, P.cubeRoot, P.dividedBy, P.dividedToIntegerBy, | |
| * P.logarithm, P.modulo, P.squareRoot, P.tan, P.tanh, P.toFraction, | |
| * P.toNearest, toStringBinary, naturalExponential, naturalLogarithm, | |
| * taylorSeries, atan2, parseOther | |
| * finalise P.absoluteValue, P.atan, P.atanh, P.ceil, P.cos, P.cosh, | |
| * P.cubeRoot, P.dividedToIntegerBy, P.floor, P.logarithm, P.minus, | |
| * P.modulo, P.negated, P.plus, P.round, P.sin, P.sinh, P.squareRoot, | |
| * P.tan, P.times, P.toDecimalPlaces, P.toExponential, P.toFixed, | |
| * P.toNearest, P.toPower, P.toPrecision, P.toSignificantDigits, | |
| * P.truncated, divide, getLn10, getPi, naturalExponential, | |
| * naturalLogarithm, ceil, floor, round, trunc | |
| * finiteToString P.toExponential, P.toFixed, P.toPrecision, P.toString, P.valueOf, | |
| * toStringBinary | |
| * getBase10Exponent P.minus, P.plus, P.times, parseOther | |
| * getLn10 P.logarithm, naturalLogarithm | |
| * getPi P.acos, P.asin, P.atan, toLessThanHalfPi, atan2 | |
| * getPrecision P.precision, P.toFraction | |
| * getZeroString digitsToString, finiteToString | |
| * intPow P.toPower, parseOther | |
| * isOdd toLessThanHalfPi | |
| * maxOrMin max, min | |
| * naturalExponential P.naturalExponential, P.toPower | |
| * naturalLogarithm P.acosh, P.asinh, P.atanh, P.logarithm, P.naturalLogarithm, | |
| * P.toPower, naturalExponential | |
| * nonFiniteToString finiteToString, toStringBinary | |
| * parseDecimal Decimal | |
| * parseOther Decimal | |
| * sin P.sin | |
| * taylorSeries P.cosh, P.sinh, cos, sin | |
| * toLessThanHalfPi P.cos, P.sin | |
| * toStringBinary P.toBinary, P.toHexadecimal, P.toOctal | |
| * truncate intPow | |
| * | |
| * Throws: P.logarithm, P.precision, P.toFraction, checkInt32, getLn10, getPi, | |
| * naturalLogarithm, config, parseOther, random, Decimal | |
| */ | |
| function digitsToString(d) { | |
| var i, k, ws, | |
| indexOfLastWord = d.length - 1, | |
| str = '', | |
| w = d[0]; | |
| if (indexOfLastWord > 0) { | |
| str += w; | |
| for (i = 1; i < indexOfLastWord; i++) { | |
| ws = d[i] + ''; | |
| k = LOG_BASE - ws.length; | |
| if (k) str += getZeroString(k); | |
| str += ws; | |
| } | |
| w = d[i]; | |
| ws = w + ''; | |
| k = LOG_BASE - ws.length; | |
| if (k) str += getZeroString(k); | |
| } else if (w === 0) { | |
| return '0'; | |
| } | |
| // Remove trailing zeros of last w. | |
| for (; w % 10 === 0;) w /= 10; | |
| return str + w; | |
| } | |
| function checkInt32(i, min, max) { | |
| if (i !== ~~i || i < min || i > max) { | |
| throw Error(invalidArgument + i); | |
| } | |
| } | |
| /* | |
| * Check 5 rounding digits if `repeating` is null, 4 otherwise. | |
| * `repeating == null` if caller is `log` or `pow`, | |
| * `repeating != null` if caller is `naturalLogarithm` or `naturalExponential`. | |
| */ | |
| function checkRoundingDigits(d, i, rm, repeating) { | |
| var di, k, r, rd; | |
| // Get the length of the first word of the array d. | |
| for (k = d[0]; k >= 10; k /= 10) --i; | |
| // Is the rounding digit in the first word of d? | |
| if (--i < 0) { | |
| i += LOG_BASE; | |
| di = 0; | |
| } else { | |
| di = Math.ceil((i + 1) / LOG_BASE); | |
| i %= LOG_BASE; | |
| } | |
| // i is the index (0 - 6) of the rounding digit. | |
| // E.g. if within the word 3487563 the first rounding digit is 5, | |
| // then i = 4, k = 1000, rd = 3487563 % 1000 = 563 | |
| k = mathpow(10, LOG_BASE - i); | |
| rd = d[di] % k | 0; | |
| if (repeating == null) { | |
| if (i < 3) { | |
| if (i == 0) rd = rd / 100 | 0; | |
| else if (i == 1) rd = rd / 10 | 0; | |
| r = rm < 4 && rd == 99999 || rm > 3 && rd == 49999 || rd == 50000 || rd == 0; | |
| } else { | |
| r = (rm < 4 && rd + 1 == k || rm > 3 && rd + 1 == k / 2) && | |
| (d[di + 1] / k / 100 | 0) == mathpow(10, i - 2) - 1 || | |
| (rd == k / 2 || rd == 0) && (d[di + 1] / k / 100 | 0) == 0; | |
| } | |
| } else { | |
| if (i < 4) { | |
| if (i == 0) rd = rd / 1000 | 0; | |
| else if (i == 1) rd = rd / 100 | 0; | |
| else if (i == 2) rd = rd / 10 | 0; | |
| r = (repeating || rm < 4) && rd == 9999 || !repeating && rm > 3 && rd == 4999; | |
| } else { | |
| r = ((repeating || rm < 4) && rd + 1 == k || | |
| (!repeating && rm > 3) && rd + 1 == k / 2) && | |
| (d[di + 1] / k / 1000 | 0) == mathpow(10, i - 3) - 1; | |
| } | |
| } | |
| return r; | |
| } | |
| // Convert string of `baseIn` to an array of numbers of `baseOut`. | |
| // Eg. convertBase('255', 10, 16) returns [15, 15]. | |
| // Eg. convertBase('ff', 16, 10) returns [2, 5, 5]. | |
| function convertBase(str, baseIn, baseOut) { | |
| var j, | |
| arr = [0], | |
| arrL, | |
| i = 0, | |
| strL = str.length; | |
| for (; i < strL;) { | |
| for (arrL = arr.length; arrL--;) arr[arrL] *= baseIn; | |
| arr[0] += NUMERALS.indexOf(str.charAt(i++)); | |
| for (j = 0; j < arr.length; j++) { | |
| if (arr[j] > baseOut - 1) { | |
| if (arr[j + 1] === void 0) arr[j + 1] = 0; | |
| arr[j + 1] += arr[j] / baseOut | 0; | |
| arr[j] %= baseOut; | |
| } | |
| } | |
| } | |
| return arr.reverse(); | |
| } | |
| /* | |
| * cos(x) = 1 - x^2/2! + x^4/4! - ... | |
| * |x| < pi/2 | |
| * | |
| */ | |
| function cosine(Ctor, x) { | |
| var k, len, y; | |
| if (x.isZero()) return x; | |
| // Argument reduction: cos(4x) = 8*(cos^4(x) - cos^2(x)) + 1 | |
| // i.e. cos(x) = 8*(cos^4(x/4) - cos^2(x/4)) + 1 | |
| // Estimate the optimum number of times to use the argument reduction. | |
| len = x.d.length; | |
| if (len < 32) { | |
| k = Math.ceil(len / 3); | |
| y = (1 / tinyPow(4, k)).toString(); | |
| } else { | |
| k = 16; | |
| y = '2.3283064365386962890625e-10'; | |
| } | |
| Ctor.precision += k; | |
| x = taylorSeries(Ctor, 1, x.times(y), new Ctor(1)); | |
| // Reverse argument reduction | |
| for (var i = k; i--;) { | |
| var cos2x = x.times(x); | |
| x = cos2x.times(cos2x).minus(cos2x).times(8).plus(1); | |
| } | |
| Ctor.precision -= k; | |
| return x; | |
| } | |
| /* | |
| * Perform division in the specified base. | |
| */ | |
| var divide = (function () { | |
| // Assumes non-zero x and k, and hence non-zero result. | |
| function multiplyInteger(x, k, base) { | |
| var temp, | |
| carry = 0, | |
| i = x.length; | |
| for (x = x.slice(); i--;) { | |
| temp = x[i] * k + carry; | |
| x[i] = temp % base | 0; | |
| carry = temp / base | 0; | |
| } | |
| if (carry) x.unshift(carry); | |
| return x; | |
| } | |
| function compare(a, b, aL, bL) { | |
| var i, r; | |
| if (aL != bL) { | |
| r = aL > bL ? 1 : -1; | |
| } else { | |
| for (i = r = 0; i < aL; i++) { | |
| if (a[i] != b[i]) { | |
| r = a[i] > b[i] ? 1 : -1; | |
| break; | |
| } | |
| } | |
| } | |
| return r; | |
| } | |
| function subtract(a, b, aL, base) { | |
| var i = 0; | |
| // Subtract b from a. | |
| for (; aL--;) { | |
| a[aL] -= i; | |
| i = a[aL] < b[aL] ? 1 : 0; | |
| a[aL] = i * base + a[aL] - b[aL]; | |
| } | |
| // Remove leading zeros. | |
| for (; !a[0] && a.length > 1;) a.shift(); | |
| } | |
| return function (x, y, pr, rm, dp, base) { | |
| var cmp, e, i, k, logBase, more, prod, prodL, q, qd, rem, remL, rem0, sd, t, xi, xL, yd0, | |
| yL, yz, | |
| Ctor = x.constructor, | |
| sign = x.s == y.s ? 1 : -1, | |
| xd = x.d, | |
| yd = y.d; | |
| // Either NaN, Infinity or 0? | |
| if (!xd || !xd[0] || !yd || !yd[0]) { | |
| return new Ctor(// Return NaN if either NaN, or both Infinity or 0. | |
| !x.s || !y.s || (xd ? yd && xd[0] == yd[0] : !yd) ? NaN : | |
| // Return ±0 if x is 0 or y is ±Infinity, or return ±Infinity as y is 0. | |
| xd && xd[0] == 0 || !yd ? sign * 0 : sign / 0); | |
| } | |
| if (base) { | |
| logBase = 1; | |
| e = x.e - y.e; | |
| } else { | |
| base = BASE; | |
| logBase = LOG_BASE; | |
| e = mathfloor(x.e / logBase) - mathfloor(y.e / logBase); | |
| } | |
| yL = yd.length; | |
| xL = xd.length; | |
| q = new Ctor(sign); | |
| qd = q.d = []; | |
| // Result exponent may be one less than e. | |
| // The digit array of a Decimal from toStringBinary may have trailing zeros. | |
| for (i = 0; yd[i] == (xd[i] || 0); i++); | |
| if (yd[i] > (xd[i] || 0)) e--; | |
| if (pr == null) { | |
| sd = pr = Ctor.precision; | |
| rm = Ctor.rounding; | |
| } else if (dp) { | |
| sd = pr + (x.e - y.e) + 1; | |
| } else { | |
| sd = pr; | |
| } | |
| if (sd < 0) { | |
| qd.push(1); | |
| more = true; | |
| } else { | |
| // Convert precision in number of base 10 digits to base 1e7 digits. | |
| sd = sd / logBase + 2 | 0; | |
| i = 0; | |
| // divisor < 1e7 | |
| if (yL == 1) { | |
| k = 0; | |
| yd = yd[0]; | |
| sd++; | |
| // k is the carry. | |
| for (; (i < xL || k) && sd--; i++) { | |
| t = k * base + (xd[i] || 0); | |
| qd[i] = t / yd | 0; | |
| k = t % yd | 0; | |
| } | |
| more = k || i < xL; | |
| // divisor >= 1e7 | |
| } else { | |
| // Normalise xd and yd so highest order digit of yd is >= base/2 | |
| k = base / (yd[0] + 1) | 0; | |
| if (k > 1) { | |
| yd = multiplyInteger(yd, k, base); | |
| xd = multiplyInteger(xd, k, base); | |
| yL = yd.length; | |
| xL = xd.length; | |
| } | |
| xi = yL; | |
| rem = xd.slice(0, yL); | |
| remL = rem.length; | |
| // Add zeros to make remainder as long as divisor. | |
| for (; remL < yL;) rem[remL++] = 0; | |
| yz = yd.slice(); | |
| yz.unshift(0); | |
| yd0 = yd[0]; | |
| if (yd[1] >= base / 2) ++yd0; | |
| do { | |
| k = 0; | |
| // Compare divisor and remainder. | |
| cmp = compare(yd, rem, yL, remL); | |
| // If divisor < remainder. | |
| if (cmp < 0) { | |
| // Calculate trial digit, k. | |
| rem0 = rem[0]; | |
| if (yL != remL) rem0 = rem0 * base + (rem[1] || 0); | |
| // k will be how many times the divisor goes into the current remainder. | |
| k = rem0 / yd0 | 0; | |
| // Algorithm: | |
| // 1. product = divisor * trial digit (k) | |
| // 2. if product > remainder: product -= divisor, k-- | |
| // 3. remainder -= product | |
| // 4. if product was < remainder at 2: | |
| // 5. compare new remainder and divisor | |
| // 6. If remainder > divisor: remainder -= divisor, k++ | |
| if (k > 1) { | |
| if (k >= base) k = base - 1; | |
| // product = divisor * trial digit. | |
| prod = multiplyInteger(yd, k, base); | |
| prodL = prod.length; | |
| remL = rem.length; | |
| // Compare product and remainder. | |
| cmp = compare(prod, rem, prodL, remL); | |
| // product > remainder. | |
| if (cmp == 1) { | |
| k--; | |
| // Subtract divisor from product. | |
| subtract(prod, yL < prodL ? yz : yd, prodL, base); | |
| } | |
| } else { | |
| // cmp is -1. | |
| // If k is 0, there is no need to compare yd and rem again below, so change cmp to 1 | |
| // to avoid it. If k is 1 there is a need to compare yd and rem again below. | |
| if (k == 0) cmp = k = 1; | |
| prod = yd.slice(); | |
| } | |
| prodL = prod.length; | |
| if (prodL < remL) prod.unshift(0); | |
| // Subtract product from remainder. | |
| subtract(rem, prod, remL, base); | |
| // If product was < previous remainder. | |
| if (cmp == -1) { | |
| remL = rem.length; | |
| // Compare divisor and new remainder. | |
| cmp = compare(yd, rem, yL, remL); | |
| // If divisor < new remainder, subtract divisor from remainder. | |
| if (cmp < 1) { | |
| k++; | |
| // Subtract divisor from remainder. | |
| subtract(rem, yL < remL ? yz : yd, remL, base); | |
| } | |
| } | |
| remL = rem.length; | |
| } else if (cmp === 0) { | |
| k++; | |
| rem = [0]; | |
| } // if cmp === 1, k will be 0 | |
| // Add the next digit, k, to the result array. | |
| qd[i++] = k; | |
| // Update the remainder. | |
| if (cmp && rem[0]) { | |
| rem[remL++] = xd[xi] || 0; | |
| } else { | |
| rem = [xd[xi]]; | |
| remL = 1; | |
| } | |
| } while ((xi++ < xL || rem[0] !== void 0) && sd--); | |
| more = rem[0] !== void 0; | |
| } | |
| // Leading zero? | |
| if (!qd[0]) qd.shift(); | |
| } | |
| // logBase is 1 when divide is being used for base conversion. | |
| if (logBase == 1) { | |
| q.e = e; | |
| inexact = more; | |
| } else { | |
| // To calculate q.e, first get the number of digits of qd[0]. | |
| for (i = 1, k = qd[0]; k >= 10; k /= 10) i++; | |
| q.e = i + e * logBase - 1; | |
| finalise(q, dp ? pr + q.e + 1 : pr, rm, more); | |
| } | |
| return q; | |
| }; | |
| })(); | |
| /* | |
| * Round `x` to `sd` significant digits using rounding mode `rm`. | |
| * Check for over/under-flow. | |
| */ | |
| function finalise(x, sd, rm, isTruncated) { | |
| var digits, i, j, k, rd, roundUp, w, xd, xdi, | |
| Ctor = x.constructor; | |
| // Don't round if sd is null or undefined. | |
| out: if (sd != null) { | |
| xd = x.d; | |
| // Infinity/NaN. | |
| if (!xd) return x; | |
| // rd: the rounding digit, i.e. the digit after the digit that may be rounded up. | |
| // w: the word of xd containing rd, a base 1e7 number. | |
| // xdi: the index of w within xd. | |
| // digits: the number of digits of w. | |
| // i: what would be the index of rd within w if all the numbers were 7 digits long (i.e. if | |
| // they had leading zeros) | |
| // j: if > 0, the actual index of rd within w (if < 0, rd is a leading zero). | |
| // Get the length of the first word of the digits array xd. | |
| for (digits = 1, k = xd[0]; k >= 10; k /= 10) digits++; | |
| i = sd - digits; | |
| // Is the rounding digit in the first word of xd? | |
| if (i < 0) { | |
| i += LOG_BASE; | |
| j = sd; | |
| w = xd[xdi = 0]; | |
| // Get the rounding digit at index j of w. | |
| rd = w / mathpow(10, digits - j - 1) % 10 | 0; | |
| } else { | |
| xdi = Math.ceil((i + 1) / LOG_BASE); | |
| k = xd.length; | |
| if (xdi >= k) { | |
| if (isTruncated) { | |
| // Needed by `naturalExponential`, `naturalLogarithm` and `squareRoot`. | |
| for (; k++ <= xdi;) xd.push(0); | |
| w = rd = 0; | |
| digits = 1; | |
| i %= LOG_BASE; | |
| j = i - LOG_BASE + 1; | |
| } else { | |
| break out; | |
| } | |
| } else { | |
| w = k = xd[xdi]; | |
| // Get the number of digits of w. | |
| for (digits = 1; k >= 10; k /= 10) digits++; | |
| // Get the index of rd within w. | |
| i %= LOG_BASE; | |
| // Get the index of rd within w, adjusted for leading zeros. | |
| // The number of leading zeros of w is given by LOG_BASE - digits. | |
| j = i - LOG_BASE + digits; | |
| // Get the rounding digit at index j of w. | |
| rd = j < 0 ? 0 : w / mathpow(10, digits - j - 1) % 10 | 0; | |
| } | |
| } | |
| // Are there any non-zero digits after the rounding digit? | |
| isTruncated = isTruncated || sd < 0 || | |
| xd[xdi + 1] !== void 0 || (j < 0 ? w : w % mathpow(10, digits - j - 1)); | |
| // The expression `w % mathpow(10, digits - j - 1)` returns all the digits of w to the right | |
| // of the digit at (left-to-right) index j, e.g. if w is 908714 and j is 2, the expression | |
| // will give 714. | |
| roundUp = rm < 4 | |
| ? (rd || isTruncated) && (rm == 0 || rm == (x.s < 0 ? 3 : 2)) | |
| : rd > 5 || rd == 5 && (rm == 4 || isTruncated || rm == 6 && | |
| // Check whether the digit to the left of the rounding digit is odd. | |
| ((i > 0 ? j > 0 ? w / mathpow(10, digits - j) : 0 : xd[xdi - 1]) % 10) & 1 || | |
| rm == (x.s < 0 ? 8 : 7)); | |
| if (sd < 1 || !xd[0]) { | |
| xd.length = 0; | |
| if (roundUp) { | |
| // Convert sd to decimal places. | |
| sd -= x.e + 1; | |
| // 1, 0.1, 0.01, 0.001, 0.0001 etc. | |
| xd[0] = mathpow(10, (LOG_BASE - sd % LOG_BASE) % LOG_BASE); | |
| x.e = -sd || 0; | |
| } else { | |
| // Zero. | |
| xd[0] = x.e = 0; | |
| } | |
| return x; | |
| } | |
| // Remove excess digits. | |
| if (i == 0) { | |
| xd.length = xdi; | |
| k = 1; | |
| xdi--; | |
| } else { | |
| xd.length = xdi + 1; | |
| k = mathpow(10, LOG_BASE - i); | |
| // E.g. 56700 becomes 56000 if 7 is the rounding digit. | |
| // j > 0 means i > number of leading zeros of w. | |
| xd[xdi] = j > 0 ? (w / mathpow(10, digits - j) % mathpow(10, j) | 0) * k : 0; | |
| } | |
| if (roundUp) { | |
| for (;;) { | |
| // Is the digit to be rounded up in the first word of xd? | |
| if (xdi == 0) { | |
| // i will be the length of xd[0] before k is added. | |
| for (i = 1, j = xd[0]; j >= 10; j /= 10) i++; | |
| j = xd[0] += k; | |
| for (k = 1; j >= 10; j /= 10) k++; | |
| // if i != k the length has increased. | |
| if (i != k) { | |
| x.e++; | |
| if (xd[0] == BASE) xd[0] = 1; | |
| } | |
| break; | |
| } else { | |
| xd[xdi] += k; | |
| if (xd[xdi] != BASE) break; | |
| xd[xdi--] = 0; | |
| k = 1; | |
| } | |
| } | |
| } | |
| // Remove trailing zeros. | |
| for (i = xd.length; xd[--i] === 0;) xd.pop(); | |
| } | |
| if (external) { | |
| // Overflow? | |
| if (x.e > Ctor.maxE) { | |
| // Infinity. | |
| x.d = null; | |
| x.e = NaN; | |
| // Underflow? | |
| } else if (x.e < Ctor.minE) { | |
| // Zero. | |
| x.e = 0; | |
| x.d = [0]; | |
| // Ctor.underflow = true; | |
| } // else Ctor.underflow = false; | |
| } | |
| return x; | |
| } | |
| function finiteToString(x, isExp, sd) { | |
| if (!x.isFinite()) return nonFiniteToString(x); | |
| var k, | |
| e = x.e, | |
| str = digitsToString(x.d), | |
| len = str.length; | |
| if (isExp) { | |
| if (sd && (k = sd - len) > 0) { | |
| str = str.charAt(0) + '.' + str.slice(1) + getZeroString(k); | |
| } else if (len > 1) { | |
| str = str.charAt(0) + '.' + str.slice(1); | |
| } | |
| str = str + (x.e < 0 ? 'e' : 'e+') + x.e; | |
| } else if (e < 0) { | |
| str = '0.' + getZeroString(-e - 1) + str; | |
| if (sd && (k = sd - len) > 0) str += getZeroString(k); | |
| } else if (e >= len) { | |
| str += getZeroString(e + 1 - len); | |
| if (sd && (k = sd - e - 1) > 0) str = str + '.' + getZeroString(k); | |
| } else { | |
| if ((k = e + 1) < len) str = str.slice(0, k) + '.' + str.slice(k); | |
| if (sd && (k = sd - len) > 0) { | |
| if (e + 1 === len) str += '.'; | |
| str += getZeroString(k); | |
| } | |
| } | |
| return str; | |
| } | |
| // Calculate the base 10 exponent from the base 1e7 exponent. | |
| function getBase10Exponent(digits, e) { | |
| var w = digits[0]; | |
| // Add the number of digits of the first word of the digits array. | |
| for ( e *= LOG_BASE; w >= 10; w /= 10) e++; | |
| return e; | |
| } | |
| function getLn10(Ctor, sd, pr) { | |
| if (sd > LN10_PRECISION) { | |
| // Reset global state in case the exception is caught. | |
| external = true; | |
| if (pr) Ctor.precision = pr; | |
| throw Error(precisionLimitExceeded); | |
| } | |
| return finalise(new Ctor(LN10), sd, 1, true); | |
| } | |
| function getPi(Ctor, sd, rm) { | |
| if (sd > PI_PRECISION) throw Error(precisionLimitExceeded); | |
| return finalise(new Ctor(PI), sd, rm, true); | |
| } | |
| function getPrecision(digits) { | |
| var w = digits.length - 1, | |
| len = w * LOG_BASE + 1; | |
| w = digits[w]; | |
| // If non-zero... | |
| if (w) { | |
| // Subtract the number of trailing zeros of the last word. | |
| for (; w % 10 == 0; w /= 10) len--; | |
| // Add the number of digits of the first word. | |
| for (w = digits[0]; w >= 10; w /= 10) len++; | |
| } | |
| return len; | |
| } | |
| function getZeroString(k) { | |
| var zs = ''; | |
| for (; k--;) zs += '0'; | |
| return zs; | |
| } | |
| /* | |
| * Return a new Decimal whose value is the value of Decimal `x` to the power `n`, where `n` is an | |
| * integer of type number. | |
| * | |
| * Implements 'exponentiation by squaring'. Called by `pow` and `parseOther`. | |
| * | |
| */ | |
| function intPow(Ctor, x, n, pr) { | |
| var isTruncated, | |
| r = new Ctor(1), | |
| // Max n of 9007199254740991 takes 53 loop iterations. | |
| // Maximum digits array length; leaves [28, 34] guard digits. | |
| k = Math.ceil(pr / LOG_BASE + 4); | |
| external = false; | |
| for (;;) { | |
| if (n % 2) { | |
| r = r.times(x); | |
| if (truncate(r.d, k)) isTruncated = true; | |
| } | |
| n = mathfloor(n / 2); | |
| if (n === 0) { | |
| // To ensure correct rounding when r.d is truncated, increment the last word if it is zero. | |
| n = r.d.length - 1; | |
| if (isTruncated && r.d[n] === 0) ++r.d[n]; | |
| break; | |
| } | |
| x = x.times(x); | |
| truncate(x.d, k); | |
| } | |
| external = true; | |
| return r; | |
| } | |
| function isOdd(n) { | |
| return n.d[n.d.length - 1] & 1; | |
| } | |
| /* | |
| * Handle `max` and `min`. `ltgt` is 'lt' or 'gt'. | |
| */ | |
| function maxOrMin(Ctor, args, ltgt) { | |
| var y, | |
| x = new Ctor(args[0]), | |
| i = 0; | |
| for (; ++i < args.length;) { | |
| y = new Ctor(args[i]); | |
| if (!y.s) { | |
| x = y; | |
| break; | |
| } else if (x[ltgt](y)) { | |
| x = y; | |
| } | |
| } | |
| return x; | |
| } | |
| /* | |
| * Return a new Decimal whose value is the natural exponential of `x` rounded to `sd` significant | |
| * digits. | |
| * | |
| * Taylor/Maclaurin series. | |
| * | |
| * exp(x) = x^0/0! + x^1/1! + x^2/2! + x^3/3! + ... | |
| * | |
| * Argument reduction: | |
| * Repeat x = x / 32, k += 5, until |x| < 0.1 | |
| * exp(x) = exp(x / 2^k)^(2^k) | |
| * | |
| * Previously, the argument was initially reduced by | |
| * exp(x) = exp(r) * 10^k where r = x - k * ln10, k = floor(x / ln10) | |
| * to first put r in the range [0, ln10], before dividing by 32 until |x| < 0.1, but this was | |
| * found to be slower than just dividing repeatedly by 32 as above. | |
| * | |
| * Max integer argument: exp('20723265836946413') = 6.3e+9000000000000000 | |
| * Min integer argument: exp('-20723265836946411') = 1.2e-9000000000000000 | |
| * (Math object integer min/max: Math.exp(709) = 8.2e+307, Math.exp(-745) = 5e-324) | |
| * | |
| * exp(Infinity) = Infinity | |
| * exp(-Infinity) = 0 | |
| * exp(NaN) = NaN | |
| * exp(±0) = 1 | |
| * | |
| * exp(x) is non-terminating for any finite, non-zero x. | |
| * | |
| * The result will always be correctly rounded. | |
| * | |
| */ | |
| function naturalExponential(x, sd) { | |
| var denominator, guard, j, pow, sum, t, wpr, | |
| rep = 0, | |
| i = 0, | |
| k = 0, | |
| Ctor = x.constructor, | |
| rm = Ctor.rounding, | |
| pr = Ctor.precision; | |
| // 0/NaN/Infinity? | |
| if (!x.d || !x.d[0] || x.e > 17) { | |
| return new Ctor(x.d | |
| ? !x.d[0] ? 1 : x.s < 0 ? 0 : 1 / 0 | |
| : x.s ? x.s < 0 ? 0 : x : 0 / 0); | |
| } | |
| if (sd == null) { | |
| external = false; | |
| wpr = pr; | |
| } else { | |
| wpr = sd; | |
| } | |
| t = new Ctor(0.03125); | |
| // while abs(x) >= 0.1 | |
| while (x.e > -2) { | |
| // x = x / 2^5 | |
| x = x.times(t); | |
| k += 5; | |
| } | |
| // Use 2 * log10(2^k) + 5 (empirically derived) to estimate the increase in precision | |
| // necessary to ensure the first 4 rounding digits are correct. | |
| guard = Math.log(mathpow(2, k)) / Math.LN10 * 2 + 5 | 0; | |
| wpr += guard; | |
| denominator = pow = sum = new Ctor(1); | |
| Ctor.precision = wpr; | |
| for (;;) { | |
| pow = finalise(pow.times(x), wpr, 1); | |
| denominator = denominator.times(++i); | |
| t = sum.plus(divide(pow, denominator, wpr, 1)); | |
| if (digitsToString(t.d).slice(0, wpr) === digitsToString(sum.d).slice(0, wpr)) { | |
| j = k; | |
| while (j--) sum = finalise(sum.times(sum), wpr, 1); | |
| // Check to see if the first 4 rounding digits are [49]999. | |
| // If so, repeat the summation with a higher precision, otherwise | |
| // e.g. with precision: 18, rounding: 1 | |
| // exp(18.404272462595034083567793919843761) = 98372560.1229999999 (should be 98372560.123) | |
| // `wpr - guard` is the index of first rounding digit. | |
| if (sd == null) { | |
| if (rep < 3 && checkRoundingDigits(sum.d, wpr - guard, rm, rep)) { | |
| Ctor.precision = wpr += 10; | |
| denominator = pow = t = new Ctor(1); | |
| i = 0; | |
| rep++; | |
| } else { | |
| return finalise(sum, Ctor.precision = pr, rm, external = true); | |
| } | |
| } else { | |
| Ctor.precision = pr; | |
| return sum; | |
| } | |
| } | |
| sum = t; | |
| } | |
| } | |
| /* | |
| * Return a new Decimal whose value is the natural logarithm of `x` rounded to `sd` significant | |
| * digits. | |
| * | |
| * ln(-n) = NaN | |
| * ln(0) = -Infinity | |
| * ln(-0) = -Infinity | |
| * ln(1) = 0 | |
| * ln(Infinity) = Infinity | |
| * ln(-Infinity) = NaN | |
| * ln(NaN) = NaN | |
| * | |
| * ln(n) (n != 1) is non-terminating. | |
| * | |
| */ | |
| function naturalLogarithm(y, sd) { | |
| var c, c0, denominator, e, numerator, rep, sum, t, wpr, x1, x2, | |
| n = 1, | |
| guard = 10, | |
| x = y, | |
| xd = x.d, | |
| Ctor = x.constructor, | |
| rm = Ctor.rounding, | |
| pr = Ctor.precision; | |
| // Is x negative or Infinity, NaN, 0 or 1? | |
| if (x.s < 0 || !xd || !xd[0] || !x.e && xd[0] == 1 && xd.length == 1) { | |
| return new Ctor(xd && !xd[0] ? -1 / 0 : x.s != 1 ? NaN : xd ? 0 : x); | |
| } | |
| if (sd == null) { | |
| external = false; | |
| wpr = pr; | |
| } else { | |
| wpr = sd; | |
| } | |
| Ctor.precision = wpr += guard; | |
| c = digitsToString(xd); | |
| c0 = c.charAt(0); | |
| if (Math.abs(e = x.e) < 1.5e15) { | |
| // Argument reduction. | |
| // The series converges faster the closer the argument is to 1, so using | |
| // ln(a^b) = b * ln(a), ln(a) = ln(a^b) / b | |
| // multiply the argument by itself until the leading digits of the significand are 7, 8, 9, | |
| // 10, 11, 12 or 13, recording the number of multiplications so the sum of the series can | |
| // later be divided by this number, then separate out the power of 10 using | |
| // ln(a*10^b) = ln(a) + b*ln(10). | |
| // max n is 21 (gives 0.9, 1.0 or 1.1) (9e15 / 21 = 4.2e14). | |
| //while (c0 < 9 && c0 != 1 || c0 == 1 && c.charAt(1) > 1) { | |
| // max n is 6 (gives 0.7 - 1.3) | |
| while (c0 < 7 && c0 != 1 || c0 == 1 && c.charAt(1) > 3) { | |
| x = x.times(y); | |
| c = digitsToString(x.d); | |
| c0 = c.charAt(0); | |
| n++; | |
| } | |
| e = x.e; | |
| if (c0 > 1) { | |
| x = new Ctor('0.' + c); | |
| e++; | |
| } else { | |
| x = new Ctor(c0 + '.' + c.slice(1)); | |
| } | |
| } else { | |
| // The argument reduction method above may result in overflow if the argument y is a massive | |
| // number with exponent >= 1500000000000000 (9e15 / 6 = 1.5e15), so instead recall this | |
| // function using ln(x*10^e) = ln(x) + e*ln(10). | |
| t = getLn10(Ctor, wpr + 2, pr).times(e + ''); | |
| x = naturalLogarithm(new Ctor(c0 + '.' + c.slice(1)), wpr - guard).plus(t); | |
| Ctor.precision = pr; | |
| return sd == null ? finalise(x, pr, rm, external = true) : x; | |
| } | |
| // x1 is x reduced to a value near 1. | |
| x1 = x; | |
| // Taylor series. | |
| // ln(y) = ln((1 + x)/(1 - x)) = 2(x + x^3/3 + x^5/5 + x^7/7 + ...) | |
| // where x = (y - 1)/(y + 1) (|x| < 1) | |
| sum = numerator = x = divide(x.minus(1), x.plus(1), wpr, 1); | |
| x2 = finalise(x.times(x), wpr, 1); | |
| denominator = 3; | |
| for (;;) { | |
| numerator = finalise(numerator.times(x2), wpr, 1); | |
| t = sum.plus(divide(numerator, new Ctor(denominator), wpr, 1)); | |
| if (digitsToString(t.d).slice(0, wpr) === digitsToString(sum.d).slice(0, wpr)) { | |
| sum = sum.times(2); | |
| // Reverse the argument reduction. Check that e is not 0 because, besides preventing an | |
| // unnecessary calculation, -0 + 0 = +0 and to ensure correct rounding -0 needs to stay -0. | |
| if (e !== 0) sum = sum.plus(getLn10(Ctor, wpr + 2, pr).times(e + '')); | |
| sum = divide(sum, new Ctor(n), wpr, 1); | |
| // Is rm > 3 and the first 4 rounding digits 4999, or rm < 4 (or the summation has | |
| // been repeated previously) and the first 4 rounding digits 9999? | |
| // If so, restart the summation with a higher precision, otherwise | |
| // e.g. with precision: 12, rounding: 1 | |
| // ln(135520028.6126091714265381533) = 18.7246299999 when it should be 18.72463. | |
| // `wpr - guard` is the index of first rounding digit. | |
| if (sd == null) { | |
| if (checkRoundingDigits(sum.d, wpr - guard, rm, rep)) { | |
| Ctor.precision = wpr += guard; | |
| t = numerator = x = divide(x1.minus(1), x1.plus(1), wpr, 1); | |
| x2 = finalise(x.times(x), wpr, 1); | |
| denominator = rep = 1; | |
| } else { | |
| return finalise(sum, Ctor.precision = pr, rm, external = true); | |
| } | |
| } else { | |
| Ctor.precision = pr; | |
| return sum; | |
| } | |
| } | |
| sum = t; | |
| denominator += 2; | |
| } | |
| } | |
| // ±Infinity, NaN. | |
| function nonFiniteToString(x) { | |
| // Unsigned. | |
| return String(x.s * x.s / 0); | |
| } | |
| /* | |
| * Parse the value of a new Decimal `x` from string `str`. | |
| */ | |
| function parseDecimal(x, str) { | |
| var e, i, len; | |
| // Decimal point? | |
| if ((e = str.indexOf('.')) > -1) str = str.replace('.', ''); | |
| // Exponential form? | |
| if ((i = str.search(/e/i)) > 0) { | |
| // Determine exponent. | |
| if (e < 0) e = i; | |
| e += +str.slice(i + 1); | |
| str = str.substring(0, i); | |
| } else if (e < 0) { | |
| // Integer. | |
| e = str.length; | |
| } | |
| // Determine leading zeros. | |
| for (i = 0; str.charCodeAt(i) === 48; i++); | |
| // Determine trailing zeros. | |
| for (len = str.length; str.charCodeAt(len - 1) === 48; --len); | |
| str = str.slice(i, len); | |
| if (str) { | |
| len -= i; | |
| x.e = e = e - i - 1; | |
| x.d = []; | |
| // Transform base | |
| // e is the base 10 exponent. | |
| // i is where to slice str to get the first word of the digits array. | |
| i = (e + 1) % LOG_BASE; | |
| if (e < 0) i += LOG_BASE; | |
| if (i < len) { | |
| if (i) x.d.push(+str.slice(0, i)); | |
| for (len -= LOG_BASE; i < len;) x.d.push(+str.slice(i, i += LOG_BASE)); | |
| str = str.slice(i); | |
| i = LOG_BASE - str.length; | |
| } else { | |
| i -= len; | |
| } | |
| for (; i--;) str += '0'; | |
| x.d.push(+str); | |
| if (external) { | |
| // Overflow? | |
| if (x.e > x.constructor.maxE) { | |
| // Infinity. | |
| x.d = null; | |
| x.e = NaN; | |
| // Underflow? | |
| } else if (x.e < x.constructor.minE) { | |
| // Zero. | |
| x.e = 0; | |
| x.d = [0]; | |
| // x.constructor.underflow = true; | |
| } // else x.constructor.underflow = false; | |
| } | |
| } else { | |
| // Zero. | |
| x.e = 0; | |
| x.d = [0]; | |
| } | |
| return x; | |
| } | |
| /* | |
| * Parse the value of a new Decimal `x` from a string `str`, which is not a decimal value. | |
| */ | |
| function parseOther(x, str) { | |
| var base, Ctor, divisor, i, isFloat, len, p, xd, xe; | |
| if (str.indexOf('_') > -1) { | |
| str = str.replace(/(\d)_(?=\d)/g, '$1'); | |
| if (isDecimal.test(str)) return parseDecimal(x, str); | |
| } else if (str === 'Infinity' || str === 'NaN') { | |
| if (!+str) x.s = NaN; | |
| x.e = NaN; | |
| x.d = null; | |
| return x; | |
| } | |
| if (isHex.test(str)) { | |
| base = 16; | |
| str = str.toLowerCase(); | |
| } else if (isBinary.test(str)) { | |
| base = 2; | |
| } else if (isOctal.test(str)) { | |
| base = 8; | |
| } else { | |
| throw Error(invalidArgument + str); | |
| } | |
| // Is there a binary exponent part? | |
| i = str.search(/p/i); | |
| if (i > 0) { | |
| p = +str.slice(i + 1); | |
| str = str.substring(2, i); | |
| } else { | |
| str = str.slice(2); | |
| } | |
| // Convert `str` as an integer then divide the result by `base` raised to a power such that the | |
| // fraction part will be restored. | |
| i = str.indexOf('.'); | |
| isFloat = i >= 0; | |
| Ctor = x.constructor; | |
| if (isFloat) { | |
| str = str.replace('.', ''); | |
| len = str.length; | |
| i = len - i; | |
| // log[10](16) = 1.2041... , log[10](88) = 1.9444.... | |
| divisor = intPow(Ctor, new Ctor(base), i, i * 2); | |
| } | |
| xd = convertBase(str, base, BASE); | |
| xe = xd.length - 1; | |
| // Remove trailing zeros. | |
| for (i = xe; xd[i] === 0; --i) xd.pop(); | |
| if (i < 0) return new Ctor(x.s * 0); | |
| x.e = getBase10Exponent(xd, xe); | |
| x.d = xd; | |
| external = false; | |
| // At what precision to perform the division to ensure exact conversion? | |
| // maxDecimalIntegerPartDigitCount = ceil(log[10](b) * otherBaseIntegerPartDigitCount) | |
| // log[10](2) = 0.30103, log[10](8) = 0.90309, log[10](16) = 1.20412 | |
| // E.g. ceil(1.2 * 3) = 4, so up to 4 decimal digits are needed to represent 3 hex int digits. | |
| // maxDecimalFractionPartDigitCount = {Hex:4|Oct:3|Bin:1} * otherBaseFractionPartDigitCount | |
| // Therefore using 4 * the number of digits of str will always be enough. | |
| if (isFloat) x = divide(x, divisor, len * 4); | |
| // Multiply by the binary exponent part if present. | |
| if (p) x = x.times(Math.abs(p) < 54 ? mathpow(2, p) : Decimal.pow(2, p)); | |
| external = true; | |
| return x; | |
| } | |
| /* | |
| * sin(x) = x - x^3/3! + x^5/5! - ... | |
| * |x| < pi/2 | |
| * | |
| */ | |
| function sine(Ctor, x) { | |
| var k, | |
| len = x.d.length; | |
| if (len < 3) { | |
| return x.isZero() ? x : taylorSeries(Ctor, 2, x, x); | |
| } | |
| // Argument reduction: sin(5x) = 16*sin^5(x) - 20*sin^3(x) + 5*sin(x) | |
| // i.e. sin(x) = 16*sin^5(x/5) - 20*sin^3(x/5) + 5*sin(x/5) | |
| // and sin(x) = sin(x/5)(5 + sin^2(x/5)(16sin^2(x/5) - 20)) | |
| // Estimate the optimum number of times to use the argument reduction. | |
| k = 1.4 * Math.sqrt(len); | |
| k = k > 16 ? 16 : k | 0; | |
| x = x.times(1 / tinyPow(5, k)); | |
| x = taylorSeries(Ctor, 2, x, x); | |
| // Reverse argument reduction | |
| var sin2_x, | |
| d5 = new Ctor(5), | |
| d16 = new Ctor(16), | |
| d20 = new Ctor(20); | |
| for (; k--;) { | |
| sin2_x = x.times(x); | |
| x = x.times(d5.plus(sin2_x.times(d16.times(sin2_x).minus(d20)))); | |
| } | |
| return x; | |
| } | |
| // Calculate Taylor series for `cos`, `cosh`, `sin` and `sinh`. | |
| function taylorSeries(Ctor, n, x, y, isHyperbolic) { | |
| var j, t, u, x2, | |
| i = 1, | |
| pr = Ctor.precision, | |
| k = Math.ceil(pr / LOG_BASE); | |
| external = false; | |
| x2 = x.times(x); | |
| u = new Ctor(y); | |
| for (;;) { | |
| t = divide(u.times(x2), new Ctor(n++ * n++), pr, 1); | |
| u = isHyperbolic ? y.plus(t) : y.minus(t); | |
| y = divide(t.times(x2), new Ctor(n++ * n++), pr, 1); | |
| t = u.plus(y); | |
| if (t.d[k] !== void 0) { | |
| for (j = k; t.d[j] === u.d[j] && j--;); | |
| if (j == -1) break; | |
| } | |
| j = u; | |
| u = y; | |
| y = t; | |
| t = j; | |
| i++; | |
| } | |
| external = true; | |
| t.d.length = k + 1; | |
| return t; | |
| } | |
| // Exponent e must be positive and non-zero. | |
| function tinyPow(b, e) { | |
| var n = b; | |
| while (--e) n *= b; | |
| return n; | |
| } | |
| // Return the absolute value of `x` reduced to less than or equal to half pi. | |
| function toLessThanHalfPi(Ctor, x) { | |
| var t, | |
| isNeg = x.s < 0, | |
| pi = getPi(Ctor, Ctor.precision, 1), | |
| halfPi = pi.times(0.5); | |
| x = x.abs(); | |
| if (x.lte(halfPi)) { | |
| quadrant = isNeg ? 4 : 1; | |
| return x; | |
| } | |
| t = x.divToInt(pi); | |
| if (t.isZero()) { | |
| quadrant = isNeg ? 3 : 2; | |
| } else { | |
| x = x.minus(t.times(pi)); | |
| // 0 <= x < pi | |
| if (x.lte(halfPi)) { | |
| quadrant = isOdd(t) ? (isNeg ? 2 : 3) : (isNeg ? 4 : 1); | |
| return x; | |
| } | |
| quadrant = isOdd(t) ? (isNeg ? 1 : 4) : (isNeg ? 3 : 2); | |
| } | |
| return x.minus(pi).abs(); | |
| } | |
| /* | |
| * Return the value of Decimal `x` as a string in base `baseOut`. | |
| * | |
| * If the optional `sd` argument is present include a binary exponent suffix. | |
| */ | |
| function toStringBinary(x, baseOut, sd, rm) { | |
| var base, e, i, k, len, roundUp, str, xd, y, | |
| Ctor = x.constructor, | |
| isExp = sd !== void 0; | |
| if (isExp) { | |
| checkInt32(sd, 1, MAX_DIGITS); | |
| if (rm === void 0) rm = Ctor.rounding; | |
| else checkInt32(rm, 0, 8); | |
| } else { | |
| sd = Ctor.precision; | |
| rm = Ctor.rounding; | |
| } | |
| if (!x.isFinite()) { | |
| str = nonFiniteToString(x); | |
| } else { | |
| str = finiteToString(x); | |
| i = str.indexOf('.'); | |
| // Use exponential notation according to `toExpPos` and `toExpNeg`? No, but if required: | |
| // maxBinaryExponent = floor((decimalExponent + 1) * log[2](10)) | |
| // minBinaryExponent = floor(decimalExponent * log[2](10)) | |
| // log[2](10) = 3.321928094887362347870319429489390175864 | |
| if (isExp) { | |
| base = 2; | |
| if (baseOut == 16) { | |
| sd = sd * 4 - 3; | |
| } else if (baseOut == 8) { | |
| sd = sd * 3 - 2; | |
| } | |
| } else { | |
| base = baseOut; | |
| } | |
| // Convert the number as an integer then divide the result by its base raised to a power such | |
| // that the fraction part will be restored. | |
| // Non-integer. | |
| if (i >= 0) { | |
| str = str.replace('.', ''); | |
| y = new Ctor(1); | |
| y.e = str.length - i; | |
| y.d = convertBase(finiteToString(y), 10, base); | |
| y.e = y.d.length; | |
| } | |
| xd = convertBase(str, 10, base); | |
| e = len = xd.length; | |
| // Remove trailing zeros. | |
| for (; xd[--len] == 0;) xd.pop(); | |
| if (!xd[0]) { | |
| str = isExp ? '0p+0' : '0'; | |
| } else { | |
| if (i < 0) { | |
| e--; | |
| } else { | |
| x = new Ctor(x); | |
| x.d = xd; | |
| x.e = e; | |
| x = divide(x, y, sd, rm, 0, base); | |
| xd = x.d; | |
| e = x.e; | |
| roundUp = inexact; | |
| } | |
| // The rounding digit, i.e. the digit after the digit that may be rounded up. | |
| i = xd[sd]; | |
| k = base / 2; | |
| roundUp = roundUp || xd[sd + 1] !== void 0; | |
| roundUp = rm < 4 | |
| ? (i !== void 0 || roundUp) && (rm === 0 || rm === (x.s < 0 ? 3 : 2)) | |
| : i > k || i === k && (rm === 4 || roundUp || rm === 6 && xd[sd - 1] & 1 || | |
| rm === (x.s < 0 ? 8 : 7)); | |
| xd.length = sd; | |
| if (roundUp) { | |
| // Rounding up may mean the previous digit has to be rounded up and so on. | |
| for (; ++xd[--sd] > base - 1;) { | |
| xd[sd] = 0; | |
| if (!sd) { | |
| ++e; | |
| xd.unshift(1); | |
| } | |
| } | |
| } | |
| // Determine trailing zeros. | |
| for (len = xd.length; !xd[len - 1]; --len); | |
| // E.g. [4, 11, 15] becomes 4bf. | |
| for (i = 0, str = ''; i < len; i++) str += NUMERALS.charAt(xd[i]); | |
| // Add binary exponent suffix? | |
| if (isExp) { | |
| if (len > 1) { | |
| if (baseOut == 16 || baseOut == 8) { | |
| i = baseOut == 16 ? 4 : 3; | |
| for (--len; len % i; len++) str += '0'; | |
| xd = convertBase(str, base, baseOut); | |
| for (len = xd.length; !xd[len - 1]; --len); | |
| // xd[0] will always be be 1 | |
| for (i = 1, str = '1.'; i < len; i++) str += NUMERALS.charAt(xd[i]); | |
| } else { | |
| str = str.charAt(0) + '.' + str.slice(1); | |
| } | |
| } | |
| str = str + (e < 0 ? 'p' : 'p+') + e; | |
| } else if (e < 0) { | |
| for (; ++e;) str = '0' + str; | |
| str = '0.' + str; | |
| } else { | |
| if (++e > len) for (e -= len; e-- ;) str += '0'; | |
| else if (e < len) str = str.slice(0, e) + '.' + str.slice(e); | |
| } | |
| } | |
| str = (baseOut == 16 ? '0x' : baseOut == 2 ? '0b' : baseOut == 8 ? '0o' : '') + str; | |
| } | |
| return x.s < 0 ? '-' + str : str; | |
| } | |
| // Does not strip trailing zeros. | |
| function truncate(arr, len) { | |
| if (arr.length > len) { | |
| arr.length = len; | |
| return true; | |
| } | |
| } | |
| // Decimal methods | |
| /* | |
| * abs | |
| * acos | |
| * acosh | |
| * add | |
| * asin | |
| * asinh | |
| * atan | |
| * atanh | |
| * atan2 | |
| * cbrt | |
| * ceil | |
| * clamp | |
| * clone | |
| * config | |
| * cos | |
| * cosh | |
| * div | |
| * exp | |
| * floor | |
| * hypot | |
| * ln | |
| * log | |
| * log2 | |
| * log10 | |
| * max | |
| * min | |
| * mod | |
| * mul | |
| * pow | |
| * random | |
| * round | |
| * set | |
| * sign | |
| * sin | |
| * sinh | |
| * sqrt | |
| * sub | |
| * sum | |
| * tan | |
| * tanh | |
| * trunc | |
| */ | |
| /* | |
| * Return a new Decimal whose value is the absolute value of `x`. | |
| * | |
| * x {number|string|Decimal} | |
| * | |
| */ | |
| function abs(x) { | |
| return new this(x).abs(); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the arccosine in radians of `x`. | |
| * | |
| * x {number|string|Decimal} | |
| * | |
| */ | |
| function acos(x) { | |
| return new this(x).acos(); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the inverse of the hyperbolic cosine of `x`, rounded to | |
| * `precision` significant digits using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} A value in radians. | |
| * | |
| */ | |
| function acosh(x) { | |
| return new this(x).acosh(); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the sum of `x` and `y`, rounded to `precision` significant | |
| * digits using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} | |
| * y {number|string|Decimal} | |
| * | |
| */ | |
| function add(x, y) { | |
| return new this(x).plus(y); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the arcsine in radians of `x`, rounded to `precision` | |
| * significant digits using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} | |
| * | |
| */ | |
| function asin(x) { | |
| return new this(x).asin(); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the inverse of the hyperbolic sine of `x`, rounded to | |
| * `precision` significant digits using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} A value in radians. | |
| * | |
| */ | |
| function asinh(x) { | |
| return new this(x).asinh(); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the arctangent in radians of `x`, rounded to `precision` | |
| * significant digits using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} | |
| * | |
| */ | |
| function atan(x) { | |
| return new this(x).atan(); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the inverse of the hyperbolic tangent of `x`, rounded to | |
| * `precision` significant digits using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} A value in radians. | |
| * | |
| */ | |
| function atanh(x) { | |
| return new this(x).atanh(); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the arctangent in radians of `y/x` in the range -pi to pi | |
| * (inclusive), rounded to `precision` significant digits using rounding mode `rounding`. | |
| * | |
| * Domain: [-Infinity, Infinity] | |
| * Range: [-pi, pi] | |
| * | |
| * y {number|string|Decimal} The y-coordinate. | |
| * x {number|string|Decimal} The x-coordinate. | |
| * | |
| * atan2(±0, -0) = ±pi | |
| * atan2(±0, +0) = ±0 | |
| * atan2(±0, -x) = ±pi for x > 0 | |
| * atan2(±0, x) = ±0 for x > 0 | |
| * atan2(-y, ±0) = -pi/2 for y > 0 | |
| * atan2(y, ±0) = pi/2 for y > 0 | |
| * atan2(±y, -Infinity) = ±pi for finite y > 0 | |
| * atan2(±y, +Infinity) = ±0 for finite y > 0 | |
| * atan2(±Infinity, x) = ±pi/2 for finite x | |
| * atan2(±Infinity, -Infinity) = ±3*pi/4 | |
| * atan2(±Infinity, +Infinity) = ±pi/4 | |
| * atan2(NaN, x) = NaN | |
| * atan2(y, NaN) = NaN | |
| * | |
| */ | |
| function atan2(y, x) { | |
| y = new this(y); | |
| x = new this(x); | |
| var r, | |
| pr = this.precision, | |
| rm = this.rounding, | |
| wpr = pr + 4; | |
| // Either NaN | |
| if (!y.s || !x.s) { | |
| r = new this(NaN); | |
| // Both ±Infinity | |
| } else if (!y.d && !x.d) { | |
| r = getPi(this, wpr, 1).times(x.s > 0 ? 0.25 : 0.75); | |
| r.s = y.s; | |
| // x is ±Infinity or y is ±0 | |
| } else if (!x.d || y.isZero()) { | |
| r = x.s < 0 ? getPi(this, pr, rm) : new this(0); | |
| r.s = y.s; | |
| // y is ±Infinity or x is ±0 | |
| } else if (!y.d || x.isZero()) { | |
| r = getPi(this, wpr, 1).times(0.5); | |
| r.s = y.s; | |
| // Both non-zero and finite | |
| } else if (x.s < 0) { | |
| this.precision = wpr; | |
| this.rounding = 1; | |
| r = this.atan(divide(y, x, wpr, 1)); | |
| x = getPi(this, wpr, 1); | |
| this.precision = pr; | |
| this.rounding = rm; | |
| r = y.s < 0 ? r.minus(x) : r.plus(x); | |
| } else { | |
| r = this.atan(divide(y, x, wpr, 1)); | |
| } | |
| return r; | |
| } | |
| /* | |
| * Return a new Decimal whose value is the cube root of `x`, rounded to `precision` significant | |
| * digits using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} | |
| * | |
| */ | |
| function cbrt(x) { | |
| return new this(x).cbrt(); | |
| } | |
| /* | |
| * Return a new Decimal whose value is `x` rounded to an integer using `ROUND_CEIL`. | |
| * | |
| * x {number|string|Decimal} | |
| * | |
| */ | |
| function ceil(x) { | |
| return finalise(x = new this(x), x.e + 1, 2); | |
| } | |
| /* | |
| * Return a new Decimal whose value is `x` clamped to the range delineated by `min` and `max`. | |
| * | |
| * x {number|string|Decimal} | |
| * min {number|string|Decimal} | |
| * max {number|string|Decimal} | |
| * | |
| */ | |
| function clamp(x, min, max) { | |
| return new this(x).clamp(min, max); | |
| } | |
| /* | |
| * Configure global settings for a Decimal constructor. | |
| * | |
| * `obj` is an object with one or more of the following properties, | |
| * | |
| * precision {number} | |
| * rounding {number} | |
| * toExpNeg {number} | |
| * toExpPos {number} | |
| * maxE {number} | |
| * minE {number} | |
| * modulo {number} | |
| * crypto {boolean|number} | |
| * defaults {true} | |
| * | |
| * E.g. Decimal.config({ precision: 20, rounding: 4 }) | |
| * | |
| */ | |
| function config(obj) { | |
| if (!obj || typeof obj !== 'object') throw Error(decimalError + 'Object expected'); | |
| var i, p, v, | |
| useDefaults = obj.defaults === true, | |
| ps = [ | |
| 'precision', 1, MAX_DIGITS, | |
| 'rounding', 0, 8, | |
| 'toExpNeg', -EXP_LIMIT, 0, | |
| 'toExpPos', 0, EXP_LIMIT, | |
| 'maxE', 0, EXP_LIMIT, | |
| 'minE', -EXP_LIMIT, 0, | |
| 'modulo', 0, 9 | |
| ]; | |
| for (i = 0; i < ps.length; i += 3) { | |
| if (p = ps[i], useDefaults) this[p] = DEFAULTS[p]; | |
| if ((v = obj[p]) !== void 0) { | |
| if (mathfloor(v) === v && v >= ps[i + 1] && v <= ps[i + 2]) this[p] = v; | |
| else throw Error(invalidArgument + p + ': ' + v); | |
| } | |
| } | |
| if (p = 'crypto', useDefaults) this[p] = DEFAULTS[p]; | |
| if ((v = obj[p]) !== void 0) { | |
| if (v === true || v === false || v === 0 || v === 1) { | |
| if (v) { | |
| if (typeof crypto != 'undefined' && crypto && | |
| (crypto.getRandomValues || crypto.randomBytes)) { | |
| this[p] = true; | |
| } else { | |
| throw Error(cryptoUnavailable); | |
| } | |
| } else { | |
| this[p] = false; | |
| } | |
| } else { | |
| throw Error(invalidArgument + p + ': ' + v); | |
| } | |
| } | |
| return this; | |
| } | |
| /* | |
| * Return a new Decimal whose value is the cosine of `x`, rounded to `precision` significant | |
| * digits using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} A value in radians. | |
| * | |
| */ | |
| function cos(x) { | |
| return new this(x).cos(); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the hyperbolic cosine of `x`, rounded to precision | |
| * significant digits using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} A value in radians. | |
| * | |
| */ | |
| function cosh(x) { | |
| return new this(x).cosh(); | |
| } | |
| /* | |
| * Create and return a Decimal constructor with the same configuration properties as this Decimal | |
| * constructor. | |
| * | |
| */ | |
| function clone(obj) { | |
| var i, p, ps; | |
| /* | |
| * The Decimal constructor and exported function. | |
| * Return a new Decimal instance. | |
| * | |
| * v {number|string|Decimal} A numeric value. | |
| * | |
| */ | |
| function Decimal(v) { | |
| var e, i, t, | |
| x = this; | |
| // Decimal called without new. | |
| if (!(x instanceof Decimal)) return new Decimal(v); | |
| // Retain a reference to this Decimal constructor, and shadow Decimal.prototype.constructor | |
| // which points to Object. | |
| x.constructor = Decimal; | |
| // Duplicate. | |
| if (isDecimalInstance(v)) { | |
| x.s = v.s; | |
| if (external) { | |
| if (!v.d || v.e > Decimal.maxE) { | |
| // Infinity. | |
| x.e = NaN; | |
| x.d = null; | |
| } else if (v.e < Decimal.minE) { | |
| // Zero. | |
| x.e = 0; | |
| x.d = [0]; | |
| } else { | |
| x.e = v.e; | |
| x.d = v.d.slice(); | |
| } | |
| } else { | |
| x.e = v.e; | |
| x.d = v.d ? v.d.slice() : v.d; | |
| } | |
| return; | |
| } | |
| t = typeof v; | |
| if (t === 'number') { | |
| if (v === 0) { | |
| x.s = 1 / v < 0 ? -1 : 1; | |
| x.e = 0; | |
| x.d = [0]; | |
| return; | |
| } | |
| if (v < 0) { | |
| v = -v; | |
| x.s = -1; | |
| } else { | |
| x.s = 1; | |
| } | |
| // Fast path for small integers. | |
| if (v === ~~v && v < 1e7) { | |
| for (e = 0, i = v; i >= 10; i /= 10) e++; | |
| if (external) { | |
| if (e > Decimal.maxE) { | |
| x.e = NaN; | |
| x.d = null; | |
| } else if (e < Decimal.minE) { | |
| x.e = 0; | |
| x.d = [0]; | |
| } else { | |
| x.e = e; | |
| x.d = [v]; | |
| } | |
| } else { | |
| x.e = e; | |
| x.d = [v]; | |
| } | |
| return; | |
| // Infinity, NaN. | |
| } else if (v * 0 !== 0) { | |
| if (!v) x.s = NaN; | |
| x.e = NaN; | |
| x.d = null; | |
| return; | |
| } | |
| return parseDecimal(x, v.toString()); | |
| } else if (t !== 'string') { | |
| throw Error(invalidArgument + v); | |
| } | |
| // Minus sign? | |
| if ((i = v.charCodeAt(0)) === 45) { | |
| v = v.slice(1); | |
| x.s = -1; | |
| } else { | |
| // Plus sign? | |
| if (i === 43) v = v.slice(1); | |
| x.s = 1; | |
| } | |
| return isDecimal.test(v) ? parseDecimal(x, v) : parseOther(x, v); | |
| } | |
| Decimal.prototype = P; | |
| Decimal.ROUND_UP = 0; | |
| Decimal.ROUND_DOWN = 1; | |
| Decimal.ROUND_CEIL = 2; | |
| Decimal.ROUND_FLOOR = 3; | |
| Decimal.ROUND_HALF_UP = 4; | |
| Decimal.ROUND_HALF_DOWN = 5; | |
| Decimal.ROUND_HALF_EVEN = 6; | |
| Decimal.ROUND_HALF_CEIL = 7; | |
| Decimal.ROUND_HALF_FLOOR = 8; | |
| Decimal.EUCLID = 9; | |
| Decimal.config = Decimal.set = config; | |
| Decimal.clone = clone; | |
| Decimal.isDecimal = isDecimalInstance; | |
| Decimal.abs = abs; | |
| Decimal.acos = acos; | |
| Decimal.acosh = acosh; // ES6 | |
| Decimal.add = add; | |
| Decimal.asin = asin; | |
| Decimal.asinh = asinh; // ES6 | |
| Decimal.atan = atan; | |
| Decimal.atanh = atanh; // ES6 | |
| Decimal.atan2 = atan2; | |
| Decimal.cbrt = cbrt; // ES6 | |
| Decimal.ceil = ceil; | |
| Decimal.clamp = clamp; | |
| Decimal.cos = cos; | |
| Decimal.cosh = cosh; // ES6 | |
| Decimal.div = div; | |
| Decimal.exp = exp; | |
| Decimal.floor = floor; | |
| Decimal.hypot = hypot; // ES6 | |
| Decimal.ln = ln; | |
| Decimal.log = log; | |
| Decimal.log10 = log10; // ES6 | |
| Decimal.log2 = log2; // ES6 | |
| Decimal.max = max; | |
| Decimal.min = min; | |
| Decimal.mod = mod; | |
| Decimal.mul = mul; | |
| Decimal.pow = pow; | |
| Decimal.random = random; | |
| Decimal.round = round; | |
| Decimal.sign = sign; // ES6 | |
| Decimal.sin = sin; | |
| Decimal.sinh = sinh; // ES6 | |
| Decimal.sqrt = sqrt; | |
| Decimal.sub = sub; | |
| Decimal.sum = sum; | |
| Decimal.tan = tan; | |
| Decimal.tanh = tanh; // ES6 | |
| Decimal.trunc = trunc; // ES6 | |
| if (obj === void 0) obj = {}; | |
| if (obj) { | |
| if (obj.defaults !== true) { | |
| ps = ['precision', 'rounding', 'toExpNeg', 'toExpPos', 'maxE', 'minE', 'modulo', 'crypto']; | |
| for (i = 0; i < ps.length;) if (!obj.hasOwnProperty(p = ps[i++])) obj[p] = this[p]; | |
| } | |
| } | |
| Decimal.config(obj); | |
| return Decimal; | |
| } | |
| /* | |
| * Return a new Decimal whose value is `x` divided by `y`, rounded to `precision` significant | |
| * digits using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} | |
| * y {number|string|Decimal} | |
| * | |
| */ | |
| function div(x, y) { | |
| return new this(x).div(y); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the natural exponential of `x`, rounded to `precision` | |
| * significant digits using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} The power to which to raise the base of the natural log. | |
| * | |
| */ | |
| function exp(x) { | |
| return new this(x).exp(); | |
| } | |
| /* | |
| * Return a new Decimal whose value is `x` round to an integer using `ROUND_FLOOR`. | |
| * | |
| * x {number|string|Decimal} | |
| * | |
| */ | |
| function floor(x) { | |
| return finalise(x = new this(x), x.e + 1, 3); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the square root of the sum of the squares of the arguments, | |
| * rounded to `precision` significant digits using rounding mode `rounding`. | |
| * | |
| * hypot(a, b, ...) = sqrt(a^2 + b^2 + ...) | |
| * | |
| * arguments {number|string|Decimal} | |
| * | |
| */ | |
| function hypot() { | |
| var i, n, | |
| t = new this(0); | |
| external = false; | |
| for (i = 0; i < arguments.length;) { | |
| n = new this(arguments[i++]); | |
| if (!n.d) { | |
| if (n.s) { | |
| external = true; | |
| return new this(1 / 0); | |
| } | |
| t = n; | |
| } else if (t.d) { | |
| t = t.plus(n.times(n)); | |
| } | |
| } | |
| external = true; | |
| return t.sqrt(); | |
| } | |
| /* | |
| * Return true if object is a Decimal instance (where Decimal is any Decimal constructor), | |
| * otherwise return false. | |
| * | |
| */ | |
| function isDecimalInstance(obj) { | |
| return obj instanceof Decimal || obj && obj.toStringTag === tag || false; | |
| } | |
| /* | |
| * Return a new Decimal whose value is the natural logarithm of `x`, rounded to `precision` | |
| * significant digits using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} | |
| * | |
| */ | |
| function ln(x) { | |
| return new this(x).ln(); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the log of `x` to the base `y`, or to base 10 if no base | |
| * is specified, rounded to `precision` significant digits using rounding mode `rounding`. | |
| * | |
| * log[y](x) | |
| * | |
| * x {number|string|Decimal} The argument of the logarithm. | |
| * y {number|string|Decimal} The base of the logarithm. | |
| * | |
| */ | |
| function log(x, y) { | |
| return new this(x).log(y); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the base 2 logarithm of `x`, rounded to `precision` | |
| * significant digits using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} | |
| * | |
| */ | |
| function log2(x) { | |
| return new this(x).log(2); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the base 10 logarithm of `x`, rounded to `precision` | |
| * significant digits using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} | |
| * | |
| */ | |
| function log10(x) { | |
| return new this(x).log(10); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the maximum of the arguments. | |
| * | |
| * arguments {number|string|Decimal} | |
| * | |
| */ | |
| function max() { | |
| return maxOrMin(this, arguments, 'lt'); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the minimum of the arguments. | |
| * | |
| * arguments {number|string|Decimal} | |
| * | |
| */ | |
| function min() { | |
| return maxOrMin(this, arguments, 'gt'); | |
| } | |
| /* | |
| * Return a new Decimal whose value is `x` modulo `y`, rounded to `precision` significant digits | |
| * using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} | |
| * y {number|string|Decimal} | |
| * | |
| */ | |
| function mod(x, y) { | |
| return new this(x).mod(y); | |
| } | |
| /* | |
| * Return a new Decimal whose value is `x` multiplied by `y`, rounded to `precision` significant | |
| * digits using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} | |
| * y {number|string|Decimal} | |
| * | |
| */ | |
| function mul(x, y) { | |
| return new this(x).mul(y); | |
| } | |
| /* | |
| * Return a new Decimal whose value is `x` raised to the power `y`, rounded to precision | |
| * significant digits using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} The base. | |
| * y {number|string|Decimal} The exponent. | |
| * | |
| */ | |
| function pow(x, y) { | |
| return new this(x).pow(y); | |
| } | |
| /* | |
| * Returns a new Decimal with a random value equal to or greater than 0 and less than 1, and with | |
| * `sd`, or `Decimal.precision` if `sd` is omitted, significant digits (or less if trailing zeros | |
| * are produced). | |
| * | |
| * [sd] {number} Significant digits. Integer, 0 to MAX_DIGITS inclusive. | |
| * | |
| */ | |
| function random(sd) { | |
| var d, e, k, n, | |
| i = 0, | |
| r = new this(1), | |
| rd = []; | |
| if (sd === void 0) sd = this.precision; | |
| else checkInt32(sd, 1, MAX_DIGITS); | |
| k = Math.ceil(sd / LOG_BASE); | |
| if (!this.crypto) { | |
| for (; i < k;) rd[i++] = Math.random() * 1e7 | 0; | |
| // Browsers supporting crypto.getRandomValues. | |
| } else if (crypto.getRandomValues) { | |
| d = crypto.getRandomValues(new Uint32Array(k)); | |
| for (; i < k;) { | |
| n = d[i]; | |
| // 0 <= n < 4294967296 | |
| // Probability n >= 4.29e9, is 4967296 / 4294967296 = 0.00116 (1 in 865). | |
| if (n >= 4.29e9) { | |
| d[i] = crypto.getRandomValues(new Uint32Array(1))[0]; | |
| } else { | |
| // 0 <= n <= 4289999999 | |
| // 0 <= (n % 1e7) <= 9999999 | |
| rd[i++] = n % 1e7; | |
| } | |
| } | |
| // Node.js supporting crypto.randomBytes. | |
| } else if (crypto.randomBytes) { | |
| // buffer | |
| d = crypto.randomBytes(k *= 4); | |
| for (; i < k;) { | |
| // 0 <= n < 2147483648 | |
| n = d[i] + (d[i + 1] << 8) + (d[i + 2] << 16) + ((d[i + 3] & 0x7f) << 24); | |
| // Probability n >= 2.14e9, is 7483648 / 2147483648 = 0.0035 (1 in 286). | |
| if (n >= 2.14e9) { | |
| crypto.randomBytes(4).copy(d, i); | |
| } else { | |
| // 0 <= n <= 2139999999 | |
| // 0 <= (n % 1e7) <= 9999999 | |
| rd.push(n % 1e7); | |
| i += 4; | |
| } | |
| } | |
| i = k / 4; | |
| } else { | |
| throw Error(cryptoUnavailable); | |
| } | |
| k = rd[--i]; | |
| sd %= LOG_BASE; | |
| // Convert trailing digits to zeros according to sd. | |
| if (k && sd) { | |
| n = mathpow(10, LOG_BASE - sd); | |
| rd[i] = (k / n | 0) * n; | |
| } | |
| // Remove trailing words which are zero. | |
| for (; rd[i] === 0; i--) rd.pop(); | |
| // Zero? | |
| if (i < 0) { | |
| e = 0; | |
| rd = [0]; | |
| } else { | |
| e = -1; | |
| // Remove leading words which are zero and adjust exponent accordingly. | |
| for (; rd[0] === 0; e -= LOG_BASE) rd.shift(); | |
| // Count the digits of the first word of rd to determine leading zeros. | |
| for (k = 1, n = rd[0]; n >= 10; n /= 10) k++; | |
| // Adjust the exponent for leading zeros of the first word of rd. | |
| if (k < LOG_BASE) e -= LOG_BASE - k; | |
| } | |
| r.e = e; | |
| r.d = rd; | |
| return r; | |
| } | |
| /* | |
| * Return a new Decimal whose value is `x` rounded to an integer using rounding mode `rounding`. | |
| * | |
| * To emulate `Math.round`, set rounding to 7 (ROUND_HALF_CEIL). | |
| * | |
| * x {number|string|Decimal} | |
| * | |
| */ | |
| function round(x) { | |
| return finalise(x = new this(x), x.e + 1, this.rounding); | |
| } | |
| /* | |
| * Return | |
| * 1 if x > 0, | |
| * -1 if x < 0, | |
| * 0 if x is 0, | |
| * -0 if x is -0, | |
| * NaN otherwise | |
| * | |
| * x {number|string|Decimal} | |
| * | |
| */ | |
| function sign(x) { | |
| x = new this(x); | |
| return x.d ? (x.d[0] ? x.s : 0 * x.s) : x.s || NaN; | |
| } | |
| /* | |
| * Return a new Decimal whose value is the sine of `x`, rounded to `precision` significant digits | |
| * using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} A value in radians. | |
| * | |
| */ | |
| function sin(x) { | |
| return new this(x).sin(); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the hyperbolic sine of `x`, rounded to `precision` | |
| * significant digits using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} A value in radians. | |
| * | |
| */ | |
| function sinh(x) { | |
| return new this(x).sinh(); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the square root of `x`, rounded to `precision` significant | |
| * digits using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} | |
| * | |
| */ | |
| function sqrt(x) { | |
| return new this(x).sqrt(); | |
| } | |
| /* | |
| * Return a new Decimal whose value is `x` minus `y`, rounded to `precision` significant digits | |
| * using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} | |
| * y {number|string|Decimal} | |
| * | |
| */ | |
| function sub(x, y) { | |
| return new this(x).sub(y); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the sum of the arguments, rounded to `precision` | |
| * significant digits using rounding mode `rounding`. | |
| * | |
| * Only the result is rounded, not the intermediate calculations. | |
| * | |
| * arguments {number|string|Decimal} | |
| * | |
| */ | |
| function sum() { | |
| var i = 0, | |
| args = arguments, | |
| x = new this(args[i]); | |
| external = false; | |
| for (; x.s && ++i < args.length;) x = x.plus(args[i]); | |
| external = true; | |
| return finalise(x, this.precision, this.rounding); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the tangent of `x`, rounded to `precision` significant | |
| * digits using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} A value in radians. | |
| * | |
| */ | |
| function tan(x) { | |
| return new this(x).tan(); | |
| } | |
| /* | |
| * Return a new Decimal whose value is the hyperbolic tangent of `x`, rounded to `precision` | |
| * significant digits using rounding mode `rounding`. | |
| * | |
| * x {number|string|Decimal} A value in radians. | |
| * | |
| */ | |
| function tanh(x) { | |
| return new this(x).tanh(); | |
| } | |
| /* | |
| * Return a new Decimal whose value is `x` truncated to an integer. | |
| * | |
| * x {number|string|Decimal} | |
| * | |
| */ | |
| function trunc(x) { | |
| return finalise(x = new this(x), x.e + 1, 1); | |
| } | |
| P[Symbol.for('nodejs.util.inspect.custom')] = P.toString; | |
| P[Symbol.toStringTag] = 'Decimal'; | |
| // Create and configure initial Decimal constructor. | |
| export var Decimal = P.constructor = clone(DEFAULTS); | |
| // Create the internal constants from their string values. | |
| LN10 = new Decimal(LN10); | |
| PI = new Decimal(PI); | |
| export default Decimal; | |