|
|
|
|
|
import streamlit as st |
|
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
|
from PIL import Image |
|
|
import torch |
|
|
|
|
|
st.title("AI Image Caption Generator") |
|
|
st.write("Upload an image and get a caption generated by an AI model!") |
|
|
|
|
|
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"]) |
|
|
|
|
|
if uploaded_file: |
|
|
image = Image.open(uploaded_file).convert('RGB') |
|
|
st.image(image, caption="Uploaded Image", use_column_width=True) |
|
|
|
|
|
st.write("Generating caption...") |
|
|
|
|
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") |
|
|
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") |
|
|
|
|
|
inputs = processor(image, return_tensors="pt") |
|
|
out = model.generate(**inputs) |
|
|
caption = processor.decode(out[0], skip_special_tokens=True) |
|
|
|
|
|
st.success(f"π Caption: {caption}") |
|
|
|