Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
| import torch | |
| model_id = "PowerInfer/SmallThinker-21BA3B-Instruct" | |
| model = None | |
| tokenizer = None | |
| generator = None | |
| def chat(prompt, max_new_tokens=256, temperature=0.7): | |
| global model, tokenizer, generator | |
| if generator is None: | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| device_map="auto", # Let Accelerate handle the devices | |
| torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
| trust_remote_code=True | |
| ) | |
| # β Remove the `device` argument to avoid ValueError | |
| generator = pipeline( | |
| "text-generation", | |
| model=model, | |
| tokenizer=tokenizer | |
| ) | |
| output = generator( | |
| prompt, | |
| max_new_tokens=max_new_tokens, | |
| temperature=temperature, | |
| do_sample=True, | |
| pad_token_id=tokenizer.eos_token_id | |
| ) | |
| return output[0]["generated_text"] | |
| demo = gr.Interface( | |
| fn=chat, | |
| inputs=[ | |
| gr.Textbox(label="Prompt", lines=4), | |
| gr.Slider(32, 512, value=256, step=16, label="Max New Tokens"), | |
| gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature") | |
| ], | |
| outputs=gr.Textbox(label="Response"), | |
| title="π¬ SmallThinker-21B", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |