Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import json
|
| 3 |
+
from anyaccomp.inference_utils import Sing2SongInferencePipeline
|
| 4 |
+
import os
|
| 5 |
+
import random
|
| 6 |
+
import librosa
|
| 7 |
+
import numpy as np
|
| 8 |
+
import soundfile as sf
|
| 9 |
+
import gradio as gr
|
| 10 |
+
import time
|
| 11 |
+
|
| 12 |
+
base_dir = os.path.dirname(
|
| 13 |
+
os.path.abspath(__file__)
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
CFG_PATH = os.path.join(base_dir, "./config/flow_matching.json")
|
| 17 |
+
CHECKPOINT_PATH = os.path.join(
|
| 18 |
+
base_dir, "./pretrained/flow_matching"
|
| 19 |
+
)
|
| 20 |
+
VOCODER_CHECKPOINT_PATH = os.path.join(
|
| 21 |
+
base_dir, "./pretrained/vocoder"
|
| 22 |
+
)
|
| 23 |
+
VOCODER_CFG_PATH = os.path.join(base_dir, "./config/vocoder.json")
|
| 24 |
+
INFER_DST = os.path.join(base_dir, "./example/output_gradio")
|
| 25 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 26 |
+
|
| 27 |
+
os.makedirs(INFER_DST, exist_ok=True)
|
| 28 |
+
acc_dst = os.path.join(INFER_DST, "accompaniment")
|
| 29 |
+
mixture_dst = os.path.join(INFER_DST, "mixture")
|
| 30 |
+
os.makedirs(acc_dst, exist_ok=True)
|
| 31 |
+
os.makedirs(mixture_dst, exist_ok=True)
|
| 32 |
+
|
| 33 |
+
print("Initializing AnyAccomp InferencePipeline...")
|
| 34 |
+
try:
|
| 35 |
+
inference_pipeline = Sing2SongInferencePipeline(
|
| 36 |
+
CHECKPOINT_PATH,
|
| 37 |
+
CFG_PATH,
|
| 38 |
+
VOCODER_CHECKPOINT_PATH,
|
| 39 |
+
VOCODER_CFG_PATH,
|
| 40 |
+
device=DEVICE,
|
| 41 |
+
)
|
| 42 |
+
inference_pipeline.sample_rate = 24000
|
| 43 |
+
print("Model loaded successfully.")
|
| 44 |
+
except Exception as e:
|
| 45 |
+
print(f"Error loading model: {e}")
|
| 46 |
+
inference_pipeline = None
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def sing2song_inference(vocal_filepath, n_timesteps, cfg_scale, seed):
|
| 50 |
+
if inference_pipeline is None:
|
| 51 |
+
raise gr.Error(
|
| 52 |
+
"Model could not be loaded. Please check paths and environment configuration."
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
if vocal_filepath is None:
|
| 56 |
+
raise gr.Error("Please upload a vocal audio file.")
|
| 57 |
+
|
| 58 |
+
if seed == -1 or seed is None:
|
| 59 |
+
seed = random.randint(0, 2**32 - 1)
|
| 60 |
+
|
| 61 |
+
seed = int(seed)
|
| 62 |
+
print(f"Using seed: {seed}")
|
| 63 |
+
|
| 64 |
+
random.seed(seed)
|
| 65 |
+
np.random.seed(seed)
|
| 66 |
+
torch.manual_seed(seed)
|
| 67 |
+
if torch.cuda.is_available():
|
| 68 |
+
torch.cuda.manual_seed_all(seed)
|
| 69 |
+
torch.backends.cudnn.deterministic = True
|
| 70 |
+
|
| 71 |
+
try:
|
| 72 |
+
duration = librosa.get_duration(path=vocal_filepath)
|
| 73 |
+
if not (3 <= duration <= 30):
|
| 74 |
+
raise gr.Error("Audio duration must be between 3 and 30 seconds.")
|
| 75 |
+
except Exception as e:
|
| 76 |
+
raise gr.Error(f"Cannot read audio file or get duration: {e}")
|
| 77 |
+
|
| 78 |
+
try:
|
| 79 |
+
vocal_audio, _ = librosa.load(vocal_filepath, sr=24000, mono=True)
|
| 80 |
+
vocal_tensor = torch.tensor(vocal_audio).unsqueeze(0).to(DEVICE)
|
| 81 |
+
|
| 82 |
+
vocal_mel = inference_pipeline.encode_vocal(vocal_tensor)
|
| 83 |
+
|
| 84 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
| 85 |
+
mel = inference_pipeline.model.reverse_diffusion(
|
| 86 |
+
vocal_mel=vocal_mel,
|
| 87 |
+
n_timesteps=int(n_timesteps),
|
| 88 |
+
cfg=cfg_scale,
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
mel = mel.float()
|
| 92 |
+
wav = inference_pipeline._generate_audio(mel)
|
| 93 |
+
wav = wav.squeeze().detach().cpu().numpy()
|
| 94 |
+
|
| 95 |
+
wav = librosa.util.fix_length(data=wav, size=len(vocal_audio))
|
| 96 |
+
mixture_wav = wav + vocal_audio
|
| 97 |
+
|
| 98 |
+
timestamp = int(time.time())
|
| 99 |
+
original_filename = os.path.basename(vocal_filepath)
|
| 100 |
+
base_filename = f"{os.path.splitext(original_filename)[0]}_{timestamp}.wav"
|
| 101 |
+
|
| 102 |
+
accompaniment_path = os.path.join(acc_dst, base_filename)
|
| 103 |
+
mixture_path = os.path.join(mixture_dst, base_filename)
|
| 104 |
+
|
| 105 |
+
sf.write(accompaniment_path, wav, 24000)
|
| 106 |
+
sf.write(mixture_path, mixture_wav, 24000)
|
| 107 |
+
|
| 108 |
+
return accompaniment_path, mixture_path, "Status: Complete!"
|
| 109 |
+
|
| 110 |
+
except Exception as e:
|
| 111 |
+
import traceback
|
| 112 |
+
|
| 113 |
+
traceback.print_exc()
|
| 114 |
+
raise gr.Error(f"An error occurred during processing: {e}")
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def randomize_seed():
|
| 118 |
+
return random.randint(0, 2**32 - 1)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 122 |
+
gr.Markdown(
|
| 123 |
+
"""
|
| 124 |
+
# AnyAccomp: GENERALIZABLE ACCOMPANIMENT GENERATION
|
| 125 |
+
Upload a 3-30 second vocal or instrument track (.wav or .mp3) and the model will generate an accompaniment for it.
|
| 126 |
+
"""
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
with gr.Row():
|
| 130 |
+
with gr.Column(scale=1):
|
| 131 |
+
gr.Markdown("### 1. Upload or Select Audio")
|
| 132 |
+
vocal_input = gr.Audio(
|
| 133 |
+
type="filepath",
|
| 134 |
+
label="Upload Vocal or Instrument Audio",
|
| 135 |
+
sources=["upload", "microphone"],
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
example1_path = os.path.join(
|
| 139 |
+
base_dir, "./example/gradio/example1.mp3"
|
| 140 |
+
)
|
| 141 |
+
example2_path = os.path.join(
|
| 142 |
+
base_dir, "./example/gradio/example2.wav"
|
| 143 |
+
)
|
| 144 |
+
example3_path = os.path.join(
|
| 145 |
+
base_dir, "./example/gradio/example3.wav"
|
| 146 |
+
)
|
| 147 |
+
gr.Examples(
|
| 148 |
+
examples=[[example1_path], [example2_path], [example3_path]],
|
| 149 |
+
inputs=[vocal_input],
|
| 150 |
+
label="Or click an example to start",
|
| 151 |
+
)
|
| 152 |
+
gr.Markdown("### 2. Adjust Parameters (Optional)")
|
| 153 |
+
with gr.Accordion("Advanced Settings", open=True):
|
| 154 |
+
n_timesteps_slider = gr.Slider(
|
| 155 |
+
minimum=10,
|
| 156 |
+
maximum=100,
|
| 157 |
+
value=50,
|
| 158 |
+
step=1,
|
| 159 |
+
label="Inference Steps (n_timesteps)",
|
| 160 |
+
)
|
| 161 |
+
cfg_slider = gr.Slider(
|
| 162 |
+
minimum=1.0, maximum=10.0, value=3.0, step=0.1, label="CFG Scale"
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
with gr.Row():
|
| 166 |
+
seed_input = gr.Number(
|
| 167 |
+
value=-1, label="Seed (-1 for random)", precision=0
|
| 168 |
+
)
|
| 169 |
+
random_seed_btn = gr.Button("🎲")
|
| 170 |
+
|
| 171 |
+
with gr.Column(scale=1):
|
| 172 |
+
gr.Markdown("### 3. Generate and Listen to the Result")
|
| 173 |
+
|
| 174 |
+
status_text = gr.Markdown("Status: Ready")
|
| 175 |
+
|
| 176 |
+
accompaniment_output = gr.Audio(
|
| 177 |
+
label="Generated Accompaniment", type="filepath"
|
| 178 |
+
)
|
| 179 |
+
mixture_output = gr.Audio(
|
| 180 |
+
label="Mixture (Vocal + Accompaniment)", type="filepath"
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
submit_btn = gr.Button("Generate Accompaniment", variant="primary")
|
| 184 |
+
|
| 185 |
+
submit_btn.click(
|
| 186 |
+
fn=sing2song_inference,
|
| 187 |
+
inputs=[vocal_input, n_timesteps_slider, cfg_slider, seed_input],
|
| 188 |
+
# The function will now update the status text as its third output
|
| 189 |
+
outputs=[accompaniment_output, mixture_output, status_text],
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
random_seed_btn.click(fn=randomize_seed, inputs=None, outputs=seed_input)
|
| 193 |
+
|
| 194 |
+
demo.queue()
|
| 195 |
+
|
| 196 |
+
if __name__ == "__main__":
|
| 197 |
+
demo.launch(server_name="0.0.0.0", server_port=8091)
|