Spaces:
Running
on
Zero
Running
on
Zero
积极的屁孩
commited on
Commit
·
2b30c39
1
Parent(s):
70645fe
first commit
Browse files- app.py +841 -0
- requirements.txt +30 -0
app.py
ADDED
|
@@ -0,0 +1,841 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import importlib.util
|
| 4 |
+
import site
|
| 5 |
+
import json
|
| 6 |
+
import torch
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import torchaudio
|
| 9 |
+
import numpy as np
|
| 10 |
+
from huggingface_hub import snapshot_download, hf_hub_download
|
| 11 |
+
import subprocess
|
| 12 |
+
import re
|
| 13 |
+
|
| 14 |
+
def install_espeak():
|
| 15 |
+
"""检测并安装espeak-ng依赖"""
|
| 16 |
+
try:
|
| 17 |
+
# 检查espeak-ng是否已安装
|
| 18 |
+
result = subprocess.run(["which", "espeak-ng"], capture_output=True, text=True)
|
| 19 |
+
if result.returncode != 0:
|
| 20 |
+
print("检测到系统中未安装espeak-ng,正在尝试安装...")
|
| 21 |
+
# 尝试使用apt-get安装espeak-ng及其数据
|
| 22 |
+
subprocess.run(["apt-get", "update"], check=True)
|
| 23 |
+
# 安装 espeak-ng 和对应的语言数据包
|
| 24 |
+
subprocess.run(["apt-get", "install", "-y", "espeak-ng", "espeak-ng-data"], check=True)
|
| 25 |
+
print("espeak-ng及其数据包安装成功!")
|
| 26 |
+
else:
|
| 27 |
+
print("espeak-ng已安装在系统中。")
|
| 28 |
+
# 即使已安装,也尝试更新数据确保完整性 (可选,但有时有帮助)
|
| 29 |
+
# print("尝试更新 espeak-ng 数据...")
|
| 30 |
+
# subprocess.run(["apt-get", "update"], check=True)
|
| 31 |
+
# subprocess.run(["apt-get", "install", "--only-upgrade", "-y", "espeak-ng-data"], check=True)
|
| 32 |
+
|
| 33 |
+
# 验证中文支持 (可选)
|
| 34 |
+
try:
|
| 35 |
+
voices_result = subprocess.run(["espeak-ng", "--voices=cmn"], capture_output=True, text=True, check=True)
|
| 36 |
+
if "cmn" in voices_result.stdout:
|
| 37 |
+
print("espeak-ng 支持 'cmn' 语言。")
|
| 38 |
+
else:
|
| 39 |
+
print("警告:espeak-ng 安装了,但 'cmn' 语言似乎仍不可用。")
|
| 40 |
+
except Exception as e:
|
| 41 |
+
print(f"验证 espeak-ng 中文支持时出错(可能不影响功能): {e}")
|
| 42 |
+
|
| 43 |
+
except Exception as e:
|
| 44 |
+
print(f"安装espeak-ng时出错: {e}")
|
| 45 |
+
print("请尝试手动运行: apt-get update && apt-get install -y espeak-ng espeak-ng-data")
|
| 46 |
+
|
| 47 |
+
# 在所有其他操作之前安装espeak
|
| 48 |
+
install_espeak()
|
| 49 |
+
|
| 50 |
+
def patch_langsegment_init():
|
| 51 |
+
try:
|
| 52 |
+
# 尝试找到 LangSegment 包的位置
|
| 53 |
+
spec = importlib.util.find_spec("LangSegment")
|
| 54 |
+
if spec is None or spec.origin is None:
|
| 55 |
+
print("无法定位 LangSegment 包。")
|
| 56 |
+
return
|
| 57 |
+
|
| 58 |
+
# 构建 __init__.py 的路径
|
| 59 |
+
init_path = os.path.join(os.path.dirname(spec.origin), '__init__.py')
|
| 60 |
+
|
| 61 |
+
if not os.path.exists(init_path):
|
| 62 |
+
print(f"未找到 LangSegment 的 __init__.py 文件于: {init_path}")
|
| 63 |
+
# 尝试在 site-packages 中查找,适用于某些环境
|
| 64 |
+
for site_pkg_path in site.getsitepackages():
|
| 65 |
+
potential_path = os.path.join(site_pkg_path, 'LangSegment', '__init__.py')
|
| 66 |
+
if os.path.exists(potential_path):
|
| 67 |
+
init_path = potential_path
|
| 68 |
+
print(f"在 site-packages 中找到 __init__.py: {init_path}")
|
| 69 |
+
break
|
| 70 |
+
else: # 如果循环正常结束(没有 break)
|
| 71 |
+
print(f"在 site-packages 中也未找到 __init__.py")
|
| 72 |
+
return
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
print(f"尝试读取 LangSegment __init__.py: {init_path}")
|
| 76 |
+
with open(init_path, 'r') as f:
|
| 77 |
+
lines = f.readlines()
|
| 78 |
+
|
| 79 |
+
modified = False
|
| 80 |
+
new_lines = []
|
| 81 |
+
target_line_prefix = "from .LangSegment import"
|
| 82 |
+
|
| 83 |
+
for line in lines:
|
| 84 |
+
stripped_line = line.strip()
|
| 85 |
+
if stripped_line.startswith(target_line_prefix):
|
| 86 |
+
if 'setLangfilters' in stripped_line or 'getLangfilters' in stripped_line:
|
| 87 |
+
print(f"发现需要修改的行: {stripped_line}")
|
| 88 |
+
# 移除 setLangfilters 和 getLangfilters
|
| 89 |
+
modified_line = stripped_line.replace(',setLangfilters', '')
|
| 90 |
+
modified_line = modified_line.replace(',getLangfilters', '')
|
| 91 |
+
# 确保逗号处理正确 (例如,如果它们是末尾的项)
|
| 92 |
+
modified_line = modified_line.replace('setLangfilters,', '')
|
| 93 |
+
modified_line = modified_line.replace('getLangfilters,', '')
|
| 94 |
+
# 如果它们是唯一的额外导入,移除可能多余的逗号
|
| 95 |
+
modified_line = modified_line.rstrip(',')
|
| 96 |
+
new_lines.append(modified_line + '\n')
|
| 97 |
+
modified = True
|
| 98 |
+
print(f"修改后的行: {modified_line.strip()}")
|
| 99 |
+
else:
|
| 100 |
+
new_lines.append(line) # 行没问题,保留原样
|
| 101 |
+
else:
|
| 102 |
+
new_lines.append(line) # 非目标行,保留原样
|
| 103 |
+
|
| 104 |
+
if modified:
|
| 105 |
+
print(f"尝试写回已修改的 LangSegment __init__.py 到: {init_path}")
|
| 106 |
+
try:
|
| 107 |
+
with open(init_path, 'w') as f:
|
| 108 |
+
f.writelines(new_lines)
|
| 109 |
+
print("LangSegment __init__.py 修改成功。")
|
| 110 |
+
# 尝试重新加载模块以使更改生效(可能无效,取决于导入链)
|
| 111 |
+
try:
|
| 112 |
+
import LangSegment
|
| 113 |
+
importlib.reload(LangSegment)
|
| 114 |
+
print("LangSegment 模块已尝试重新加载。")
|
| 115 |
+
except Exception as reload_e:
|
| 116 |
+
print(f"重新加载 LangSegment 时出错(可能无影响): {reload_e}")
|
| 117 |
+
except PermissionError:
|
| 118 |
+
print(f"错误:权限不足,无法修改 {init_path}。请考虑修改 requirements.txt。")
|
| 119 |
+
except Exception as write_e:
|
| 120 |
+
print(f"写入 LangSegment __init__.py 时发生其他错误: {write_e}")
|
| 121 |
+
else:
|
| 122 |
+
print("LangSegment __init__.py 无需修改。")
|
| 123 |
+
|
| 124 |
+
except ImportError:
|
| 125 |
+
print("未找到 LangSegment 包,无法进行修复。")
|
| 126 |
+
except Exception as e:
|
| 127 |
+
print(f"修复 LangSegment 包时发生意外错误: {e}")
|
| 128 |
+
|
| 129 |
+
# 在所有其他导入(尤其是可能触发 LangSegment 导入的 Amphion)之前执行修复
|
| 130 |
+
patch_langsegment_init()
|
| 131 |
+
|
| 132 |
+
# 克隆Amphion仓库
|
| 133 |
+
if not os.path.exists("Amphion"):
|
| 134 |
+
subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"])
|
| 135 |
+
os.chdir("Amphion")
|
| 136 |
+
else:
|
| 137 |
+
if not os.getcwd().endswith("Amphion"):
|
| 138 |
+
os.chdir("Amphion")
|
| 139 |
+
|
| 140 |
+
# 将Amphion加入到路径中
|
| 141 |
+
if os.path.dirname(os.path.abspath("Amphion")) not in sys.path:
|
| 142 |
+
sys.path.append(os.path.dirname(os.path.abspath("Amphion")))
|
| 143 |
+
|
| 144 |
+
# 确保需要的目录存在
|
| 145 |
+
os.makedirs("wav", exist_ok=True)
|
| 146 |
+
os.makedirs("ckpts/Vevo", exist_ok=True)
|
| 147 |
+
|
| 148 |
+
from models.vc.vevo.vevo_utils import VevoInferencePipeline, save_audio, load_wav
|
| 149 |
+
|
| 150 |
+
# 下载和设置配置文件
|
| 151 |
+
def setup_configs():
|
| 152 |
+
config_path = "models/vc/vevo/config"
|
| 153 |
+
os.makedirs(config_path, exist_ok=True)
|
| 154 |
+
|
| 155 |
+
config_files = [
|
| 156 |
+
"PhoneToVq8192.json",
|
| 157 |
+
"Vocoder.json",
|
| 158 |
+
"Vq32ToVq8192.json",
|
| 159 |
+
"Vq8192ToMels.json",
|
| 160 |
+
"hubert_large_l18_c32.yaml",
|
| 161 |
+
]
|
| 162 |
+
|
| 163 |
+
for file in config_files:
|
| 164 |
+
file_path = f"{config_path}/{file}"
|
| 165 |
+
if not os.path.exists(file_path):
|
| 166 |
+
try:
|
| 167 |
+
file_data = hf_hub_download(
|
| 168 |
+
repo_id="amphion/Vevo",
|
| 169 |
+
filename=f"config/{file}",
|
| 170 |
+
repo_type="model",
|
| 171 |
+
)
|
| 172 |
+
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
| 173 |
+
# 拷贝文件到目标位置
|
| 174 |
+
subprocess.run(["cp", file_data, file_path])
|
| 175 |
+
except Exception as e:
|
| 176 |
+
print(f"下载配置文件 {file} 时出错: {e}")
|
| 177 |
+
|
| 178 |
+
setup_configs()
|
| 179 |
+
|
| 180 |
+
# 设备配置
|
| 181 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 182 |
+
print(f"使用设备: {device}")
|
| 183 |
+
|
| 184 |
+
# 初始化管道字典
|
| 185 |
+
inference_pipelines = {}
|
| 186 |
+
|
| 187 |
+
def get_pipeline(pipeline_type):
|
| 188 |
+
if pipeline_type in inference_pipelines:
|
| 189 |
+
return inference_pipelines[pipeline_type]
|
| 190 |
+
|
| 191 |
+
# 根据需要的管道类型初始化
|
| 192 |
+
if pipeline_type == "style" or pipeline_type == "voice":
|
| 193 |
+
# 下载Content Tokenizer
|
| 194 |
+
local_dir = snapshot_download(
|
| 195 |
+
repo_id="amphion/Vevo",
|
| 196 |
+
repo_type="model",
|
| 197 |
+
cache_dir="./ckpts/Vevo",
|
| 198 |
+
allow_patterns=["tokenizer/vq32/*"],
|
| 199 |
+
)
|
| 200 |
+
content_tokenizer_ckpt_path = os.path.join(
|
| 201 |
+
local_dir, "tokenizer/vq32/hubert_large_l18_c32.pkl"
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
# 下载Content-Style Tokenizer
|
| 205 |
+
local_dir = snapshot_download(
|
| 206 |
+
repo_id="amphion/Vevo",
|
| 207 |
+
repo_type="model",
|
| 208 |
+
cache_dir="./ckpts/Vevo",
|
| 209 |
+
allow_patterns=["tokenizer/vq8192/*"],
|
| 210 |
+
)
|
| 211 |
+
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
|
| 212 |
+
|
| 213 |
+
# 下载Autoregressive Transformer
|
| 214 |
+
local_dir = snapshot_download(
|
| 215 |
+
repo_id="amphion/Vevo",
|
| 216 |
+
repo_type="model",
|
| 217 |
+
cache_dir="./ckpts/Vevo",
|
| 218 |
+
allow_patterns=["contentstyle_modeling/Vq32ToVq8192/*"],
|
| 219 |
+
)
|
| 220 |
+
ar_cfg_path = "./models/vc/vevo/config/Vq32ToVq8192.json"
|
| 221 |
+
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/Vq32ToVq8192")
|
| 222 |
+
|
| 223 |
+
# 下载Flow Matching Transformer
|
| 224 |
+
local_dir = snapshot_download(
|
| 225 |
+
repo_id="amphion/Vevo",
|
| 226 |
+
repo_type="model",
|
| 227 |
+
cache_dir="./ckpts/Vevo",
|
| 228 |
+
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
|
| 229 |
+
)
|
| 230 |
+
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
|
| 231 |
+
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
|
| 232 |
+
|
| 233 |
+
# 下载Vocoder
|
| 234 |
+
local_dir = snapshot_download(
|
| 235 |
+
repo_id="amphion/Vevo",
|
| 236 |
+
repo_type="model",
|
| 237 |
+
cache_dir="./ckpts/Vevo",
|
| 238 |
+
allow_patterns=["acoustic_modeling/Vocoder/*"],
|
| 239 |
+
)
|
| 240 |
+
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
|
| 241 |
+
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
|
| 242 |
+
|
| 243 |
+
# 初始化管道
|
| 244 |
+
inference_pipeline = VevoInferencePipeline(
|
| 245 |
+
content_tokenizer_ckpt_path=content_tokenizer_ckpt_path,
|
| 246 |
+
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
|
| 247 |
+
ar_cfg_path=ar_cfg_path,
|
| 248 |
+
ar_ckpt_path=ar_ckpt_path,
|
| 249 |
+
fmt_cfg_path=fmt_cfg_path,
|
| 250 |
+
fmt_ckpt_path=fmt_ckpt_path,
|
| 251 |
+
vocoder_cfg_path=vocoder_cfg_path,
|
| 252 |
+
vocoder_ckpt_path=vocoder_ckpt_path,
|
| 253 |
+
device=device,
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
elif pipeline_type == "timbre":
|
| 257 |
+
# 下载Content-Style Tokenizer (仅timbre需要)
|
| 258 |
+
local_dir = snapshot_download(
|
| 259 |
+
repo_id="amphion/Vevo",
|
| 260 |
+
repo_type="model",
|
| 261 |
+
cache_dir="./ckpts/Vevo",
|
| 262 |
+
allow_patterns=["tokenizer/vq8192/*"],
|
| 263 |
+
)
|
| 264 |
+
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
|
| 265 |
+
|
| 266 |
+
# 下载Flow Matching Transformer
|
| 267 |
+
local_dir = snapshot_download(
|
| 268 |
+
repo_id="amphion/Vevo",
|
| 269 |
+
repo_type="model",
|
| 270 |
+
cache_dir="./ckpts/Vevo",
|
| 271 |
+
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
|
| 272 |
+
)
|
| 273 |
+
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
|
| 274 |
+
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
|
| 275 |
+
|
| 276 |
+
# 下载Vocoder
|
| 277 |
+
local_dir = snapshot_download(
|
| 278 |
+
repo_id="amphion/Vevo",
|
| 279 |
+
repo_type="model",
|
| 280 |
+
cache_dir="./ckpts/Vevo",
|
| 281 |
+
allow_patterns=["acoustic_modeling/Vocoder/*"],
|
| 282 |
+
)
|
| 283 |
+
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
|
| 284 |
+
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
|
| 285 |
+
|
| 286 |
+
# 初始化管道
|
| 287 |
+
inference_pipeline = VevoInferencePipeline(
|
| 288 |
+
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
|
| 289 |
+
fmt_cfg_path=fmt_cfg_path,
|
| 290 |
+
fmt_ckpt_path=fmt_ckpt_path,
|
| 291 |
+
vocoder_cfg_path=vocoder_cfg_path,
|
| 292 |
+
vocoder_ckpt_path=vocoder_ckpt_path,
|
| 293 |
+
device=device,
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
elif pipeline_type == "tts":
|
| 297 |
+
# 下载Content-Style Tokenizer
|
| 298 |
+
local_dir = snapshot_download(
|
| 299 |
+
repo_id="amphion/Vevo",
|
| 300 |
+
repo_type="model",
|
| 301 |
+
cache_dir="./ckpts/Vevo",
|
| 302 |
+
allow_patterns=["tokenizer/vq8192/*"],
|
| 303 |
+
)
|
| 304 |
+
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
|
| 305 |
+
|
| 306 |
+
# 下载Autoregressive Transformer (TTS特有)
|
| 307 |
+
local_dir = snapshot_download(
|
| 308 |
+
repo_id="amphion/Vevo",
|
| 309 |
+
repo_type="model",
|
| 310 |
+
cache_dir="./ckpts/Vevo",
|
| 311 |
+
allow_patterns=["contentstyle_modeling/PhoneToVq8192/*"],
|
| 312 |
+
)
|
| 313 |
+
ar_cfg_path = "./models/vc/vevo/config/PhoneToVq8192.json"
|
| 314 |
+
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/PhoneToVq8192")
|
| 315 |
+
|
| 316 |
+
# 下载Flow Matching Transformer
|
| 317 |
+
local_dir = snapshot_download(
|
| 318 |
+
repo_id="amphion/Vevo",
|
| 319 |
+
repo_type="model",
|
| 320 |
+
cache_dir="./ckpts/Vevo",
|
| 321 |
+
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
|
| 322 |
+
)
|
| 323 |
+
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
|
| 324 |
+
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
|
| 325 |
+
|
| 326 |
+
# 下载Vocoder
|
| 327 |
+
local_dir = snapshot_download(
|
| 328 |
+
repo_id="amphion/Vevo",
|
| 329 |
+
repo_type="model",
|
| 330 |
+
cache_dir="./ckpts/Vevo",
|
| 331 |
+
allow_patterns=["acoustic_modeling/Vocoder/*"],
|
| 332 |
+
)
|
| 333 |
+
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
|
| 334 |
+
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
|
| 335 |
+
|
| 336 |
+
# 初始化管道
|
| 337 |
+
inference_pipeline = VevoInferencePipeline(
|
| 338 |
+
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
|
| 339 |
+
ar_cfg_path=ar_cfg_path,
|
| 340 |
+
ar_ckpt_path=ar_ckpt_path,
|
| 341 |
+
fmt_cfg_path=fmt_cfg_path,
|
| 342 |
+
fmt_ckpt_path=fmt_ckpt_path,
|
| 343 |
+
vocoder_cfg_path=vocoder_cfg_path,
|
| 344 |
+
vocoder_ckpt_path=vocoder_ckpt_path,
|
| 345 |
+
device=device,
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
# 缓存管道实例
|
| 349 |
+
inference_pipelines[pipeline_type] = inference_pipeline
|
| 350 |
+
return inference_pipeline
|
| 351 |
+
|
| 352 |
+
# 实现VEVO功能函数
|
| 353 |
+
def vevo_style(content_wav, style_wav):
|
| 354 |
+
temp_content_path = "wav/temp_content.wav"
|
| 355 |
+
temp_style_path = "wav/temp_style.wav"
|
| 356 |
+
output_path = "wav/output_vevostyle.wav"
|
| 357 |
+
|
| 358 |
+
# 检查并处理音频数据
|
| 359 |
+
if content_wav is None or style_wav is None:
|
| 360 |
+
raise ValueError("Please upload audio files")
|
| 361 |
+
|
| 362 |
+
# 处理音频格式
|
| 363 |
+
if isinstance(content_wav, tuple) and len(content_wav) == 2:
|
| 364 |
+
if isinstance(content_wav[0], np.ndarray):
|
| 365 |
+
content_data, content_sr = content_wav
|
| 366 |
+
else:
|
| 367 |
+
content_sr, content_data = content_wav
|
| 368 |
+
|
| 369 |
+
# 确保是单声道
|
| 370 |
+
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
|
| 371 |
+
content_data = np.mean(content_data, axis=1)
|
| 372 |
+
|
| 373 |
+
# 重采样到24kHz
|
| 374 |
+
if content_sr != 24000:
|
| 375 |
+
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
| 376 |
+
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
|
| 377 |
+
content_sr = 24000
|
| 378 |
+
else:
|
| 379 |
+
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
| 380 |
+
|
| 381 |
+
# 归一化音量
|
| 382 |
+
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
|
| 383 |
+
else:
|
| 384 |
+
raise ValueError("Invalid content audio format")
|
| 385 |
+
|
| 386 |
+
if isinstance(style_wav, tuple) and len(style_wav) == 2:
|
| 387 |
+
# 确保正确的顺序 (data, sample_rate)
|
| 388 |
+
if isinstance(style_wav[0], np.ndarray):
|
| 389 |
+
style_data, style_sr = style_wav
|
| 390 |
+
else:
|
| 391 |
+
style_sr, style_data = style_wav
|
| 392 |
+
style_tensor = torch.FloatTensor(style_data)
|
| 393 |
+
if style_tensor.ndim == 1:
|
| 394 |
+
style_tensor = style_tensor.unsqueeze(0) # 添加通道维度
|
| 395 |
+
else:
|
| 396 |
+
raise ValueError("Invalid style audio format")
|
| 397 |
+
|
| 398 |
+
# 打印debug信息
|
| 399 |
+
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
|
| 400 |
+
print(f"Style audio shape: {style_tensor.shape}, sample rate: {style_sr}")
|
| 401 |
+
|
| 402 |
+
# 保存音频
|
| 403 |
+
torchaudio.save(temp_content_path, content_tensor, content_sr)
|
| 404 |
+
torchaudio.save(temp_style_path, style_tensor, style_sr)
|
| 405 |
+
|
| 406 |
+
try:
|
| 407 |
+
# 获取管道
|
| 408 |
+
pipeline = get_pipeline("style")
|
| 409 |
+
|
| 410 |
+
# 推理
|
| 411 |
+
gen_audio = pipeline.inference_ar_and_fm(
|
| 412 |
+
src_wav_path=temp_content_path,
|
| 413 |
+
src_text=None,
|
| 414 |
+
style_ref_wav_path=temp_style_path,
|
| 415 |
+
timbre_ref_wav_path=temp_content_path,
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
# 检查生成音频是否为数值异常
|
| 419 |
+
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
|
| 420 |
+
print("Warning: Generated audio contains NaN or Inf values")
|
| 421 |
+
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
|
| 422 |
+
|
| 423 |
+
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
|
| 424 |
+
|
| 425 |
+
# 保存生成的音频
|
| 426 |
+
save_audio(gen_audio, output_path=output_path)
|
| 427 |
+
|
| 428 |
+
return output_path
|
| 429 |
+
except Exception as e:
|
| 430 |
+
print(f"Error during processing: {e}")
|
| 431 |
+
import traceback
|
| 432 |
+
traceback.print_exc()
|
| 433 |
+
raise e
|
| 434 |
+
|
| 435 |
+
def vevo_timbre(content_wav, reference_wav):
|
| 436 |
+
temp_content_path = "wav/temp_content.wav"
|
| 437 |
+
temp_reference_path = "wav/temp_reference.wav"
|
| 438 |
+
output_path = "wav/output_vevotimbre.wav"
|
| 439 |
+
|
| 440 |
+
# 检查并处理音频数据
|
| 441 |
+
if content_wav is None or reference_wav is None:
|
| 442 |
+
raise ValueError("Please upload audio files")
|
| 443 |
+
|
| 444 |
+
# 处理内容音频格式
|
| 445 |
+
if isinstance(content_wav, tuple) and len(content_wav) == 2:
|
| 446 |
+
if isinstance(content_wav[0], np.ndarray):
|
| 447 |
+
content_data, content_sr = content_wav
|
| 448 |
+
else:
|
| 449 |
+
content_sr, content_data = content_wav
|
| 450 |
+
|
| 451 |
+
# 确保是单声道
|
| 452 |
+
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
|
| 453 |
+
content_data = np.mean(content_data, axis=1)
|
| 454 |
+
|
| 455 |
+
# 重采样到24kHz
|
| 456 |
+
if content_sr != 24000:
|
| 457 |
+
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
| 458 |
+
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
|
| 459 |
+
content_sr = 24000
|
| 460 |
+
else:
|
| 461 |
+
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
| 462 |
+
|
| 463 |
+
# 归一化音量
|
| 464 |
+
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
|
| 465 |
+
else:
|
| 466 |
+
raise ValueError("Invalid content audio format")
|
| 467 |
+
|
| 468 |
+
# 处理参考音频格式
|
| 469 |
+
if isinstance(reference_wav, tuple) and len(reference_wav) == 2:
|
| 470 |
+
if isinstance(reference_wav[0], np.ndarray):
|
| 471 |
+
reference_data, reference_sr = reference_wav
|
| 472 |
+
else:
|
| 473 |
+
reference_sr, reference_data = reference_wav
|
| 474 |
+
|
| 475 |
+
# 确保是单声道
|
| 476 |
+
if len(reference_data.shape) > 1 and reference_data.shape[1] > 1:
|
| 477 |
+
reference_data = np.mean(reference_data, axis=1)
|
| 478 |
+
|
| 479 |
+
# 重采样到24kHz
|
| 480 |
+
if reference_sr != 24000:
|
| 481 |
+
reference_tensor = torch.FloatTensor(reference_data).unsqueeze(0)
|
| 482 |
+
reference_tensor = torchaudio.functional.resample(reference_tensor, reference_sr, 24000)
|
| 483 |
+
reference_sr = 24000
|
| 484 |
+
else:
|
| 485 |
+
reference_tensor = torch.FloatTensor(reference_data).unsqueeze(0)
|
| 486 |
+
|
| 487 |
+
# 归一化音量
|
| 488 |
+
reference_tensor = reference_tensor / (torch.max(torch.abs(reference_tensor)) + 1e-6) * 0.95
|
| 489 |
+
else:
|
| 490 |
+
raise ValueError("Invalid reference audio format")
|
| 491 |
+
|
| 492 |
+
# 打印debug信息
|
| 493 |
+
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
|
| 494 |
+
print(f"Reference audio shape: {reference_tensor.shape}, sample rate: {reference_sr}")
|
| 495 |
+
|
| 496 |
+
# 保存上传的音频
|
| 497 |
+
torchaudio.save(temp_content_path, content_tensor, content_sr)
|
| 498 |
+
torchaudio.save(temp_reference_path, reference_tensor, reference_sr)
|
| 499 |
+
|
| 500 |
+
try:
|
| 501 |
+
# 获取管道
|
| 502 |
+
pipeline = get_pipeline("timbre")
|
| 503 |
+
|
| 504 |
+
# 推理
|
| 505 |
+
gen_audio = pipeline.inference_fm(
|
| 506 |
+
src_wav_path=temp_content_path,
|
| 507 |
+
timbre_ref_wav_path=temp_reference_path,
|
| 508 |
+
flow_matching_steps=32,
|
| 509 |
+
)
|
| 510 |
+
|
| 511 |
+
# 检查生成音频是否为数值异常
|
| 512 |
+
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
|
| 513 |
+
print("Warning: Generated audio contains NaN or Inf values")
|
| 514 |
+
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
|
| 515 |
+
|
| 516 |
+
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
|
| 517 |
+
|
| 518 |
+
# 保存生成的音频
|
| 519 |
+
save_audio(gen_audio, output_path=output_path)
|
| 520 |
+
|
| 521 |
+
return output_path
|
| 522 |
+
except Exception as e:
|
| 523 |
+
print(f"Error during processing: {e}")
|
| 524 |
+
import traceback
|
| 525 |
+
traceback.print_exc()
|
| 526 |
+
raise e
|
| 527 |
+
|
| 528 |
+
def vevo_voice(content_wav, style_reference_wav, timbre_reference_wav):
|
| 529 |
+
temp_content_path = "wav/temp_content.wav"
|
| 530 |
+
temp_style_path = "wav/temp_style.wav"
|
| 531 |
+
temp_timbre_path = "wav/temp_timbre.wav"
|
| 532 |
+
output_path = "wav/output_vevovoice.wav"
|
| 533 |
+
|
| 534 |
+
# 检查并处理音频数据
|
| 535 |
+
if content_wav is None or style_reference_wav is None or timbre_reference_wav is None:
|
| 536 |
+
raise ValueError("Please upload all required audio files")
|
| 537 |
+
|
| 538 |
+
# 处理内容音频格式
|
| 539 |
+
if isinstance(content_wav, tuple) and len(content_wav) == 2:
|
| 540 |
+
if isinstance(content_wav[0], np.ndarray):
|
| 541 |
+
content_data, content_sr = content_wav
|
| 542 |
+
else:
|
| 543 |
+
content_sr, content_data = content_wav
|
| 544 |
+
|
| 545 |
+
# 确保是单声道
|
| 546 |
+
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
|
| 547 |
+
content_data = np.mean(content_data, axis=1)
|
| 548 |
+
|
| 549 |
+
# 重采样到24kHz
|
| 550 |
+
if content_sr != 24000:
|
| 551 |
+
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
| 552 |
+
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
|
| 553 |
+
content_sr = 24000
|
| 554 |
+
else:
|
| 555 |
+
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
| 556 |
+
|
| 557 |
+
# 归一化音量
|
| 558 |
+
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
|
| 559 |
+
else:
|
| 560 |
+
raise ValueError("Invalid content audio format")
|
| 561 |
+
|
| 562 |
+
# 处理风格参考音频格式
|
| 563 |
+
if isinstance(style_reference_wav, tuple) and len(style_reference_wav) == 2:
|
| 564 |
+
if isinstance(style_reference_wav[0], np.ndarray):
|
| 565 |
+
style_data, style_sr = style_reference_wav
|
| 566 |
+
else:
|
| 567 |
+
style_sr, style_data = style_reference_wav
|
| 568 |
+
|
| 569 |
+
# 确保是单声道
|
| 570 |
+
if len(style_data.shape) > 1 and style_data.shape[1] > 1:
|
| 571 |
+
style_data = np.mean(style_data, axis=1)
|
| 572 |
+
|
| 573 |
+
# 重采样到24kHz
|
| 574 |
+
if style_sr != 24000:
|
| 575 |
+
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
|
| 576 |
+
style_tensor = torchaudio.functional.resample(style_tensor, style_sr, 24000)
|
| 577 |
+
style_sr = 24000
|
| 578 |
+
else:
|
| 579 |
+
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
|
| 580 |
+
|
| 581 |
+
# 归一化音量
|
| 582 |
+
style_tensor = style_tensor / (torch.max(torch.abs(style_tensor)) + 1e-6) * 0.95
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError("Invalid style reference audio format")
|
| 585 |
+
|
| 586 |
+
# 处理音色参考音频格式
|
| 587 |
+
if isinstance(timbre_reference_wav, tuple) and len(timbre_reference_wav) == 2:
|
| 588 |
+
if isinstance(timbre_reference_wav[0], np.ndarray):
|
| 589 |
+
timbre_data, timbre_sr = timbre_reference_wav
|
| 590 |
+
else:
|
| 591 |
+
timbre_sr, timbre_data = timbre_reference_wav
|
| 592 |
+
|
| 593 |
+
# 确保是单声道
|
| 594 |
+
if len(timbre_data.shape) > 1 and timbre_data.shape[1] > 1:
|
| 595 |
+
timbre_data = np.mean(timbre_data, axis=1)
|
| 596 |
+
|
| 597 |
+
# 重采样到24kHz
|
| 598 |
+
if timbre_sr != 24000:
|
| 599 |
+
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
|
| 600 |
+
timbre_tensor = torchaudio.functional.resample(timbre_tensor, timbre_sr, 24000)
|
| 601 |
+
timbre_sr = 24000
|
| 602 |
+
else:
|
| 603 |
+
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
|
| 604 |
+
|
| 605 |
+
# 归一化音量
|
| 606 |
+
timbre_tensor = timbre_tensor / (torch.max(torch.abs(timbre_tensor)) + 1e-6) * 0.95
|
| 607 |
+
else:
|
| 608 |
+
raise ValueError("Invalid timbre reference audio format")
|
| 609 |
+
|
| 610 |
+
# 打印debug信息
|
| 611 |
+
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
|
| 612 |
+
print(f"Style reference audio shape: {style_tensor.shape}, sample rate: {style_sr}")
|
| 613 |
+
print(f"Timbre reference audio shape: {timbre_tensor.shape}, sample rate: {timbre_sr}")
|
| 614 |
+
|
| 615 |
+
# 保存上传��音频
|
| 616 |
+
torchaudio.save(temp_content_path, content_tensor, content_sr)
|
| 617 |
+
torchaudio.save(temp_style_path, style_tensor, style_sr)
|
| 618 |
+
torchaudio.save(temp_timbre_path, timbre_tensor, timbre_sr)
|
| 619 |
+
|
| 620 |
+
try:
|
| 621 |
+
# 获取管道
|
| 622 |
+
pipeline = get_pipeline("voice")
|
| 623 |
+
|
| 624 |
+
# 推理
|
| 625 |
+
gen_audio = pipeline.inference_ar_and_fm(
|
| 626 |
+
src_wav_path=temp_content_path,
|
| 627 |
+
src_text=None,
|
| 628 |
+
style_ref_wav_path=temp_style_path,
|
| 629 |
+
timbre_ref_wav_path=temp_timbre_path,
|
| 630 |
+
)
|
| 631 |
+
|
| 632 |
+
# 检查生成音频是否为数值异常
|
| 633 |
+
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
|
| 634 |
+
print("Warning: Generated audio contains NaN or Inf values")
|
| 635 |
+
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
|
| 636 |
+
|
| 637 |
+
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
|
| 638 |
+
|
| 639 |
+
# 保存生成的音频
|
| 640 |
+
save_audio(gen_audio, output_path=output_path)
|
| 641 |
+
|
| 642 |
+
return output_path
|
| 643 |
+
except Exception as e:
|
| 644 |
+
print(f"Error during processing: {e}")
|
| 645 |
+
import traceback
|
| 646 |
+
traceback.print_exc()
|
| 647 |
+
raise e
|
| 648 |
+
|
| 649 |
+
def vevo_tts(text, ref_wav, timbre_ref_wav=None, style_ref_text=None, src_language="en", ref_language="en", style_ref_text_language="en"):
|
| 650 |
+
temp_ref_path = "wav/temp_ref.wav"
|
| 651 |
+
temp_timbre_path = "wav/temp_timbre.wav"
|
| 652 |
+
output_path = "wav/output_vevotts.wav"
|
| 653 |
+
|
| 654 |
+
# 检查并处理音频数据
|
| 655 |
+
if ref_wav is None:
|
| 656 |
+
raise ValueError("Please upload a reference audio file")
|
| 657 |
+
|
| 658 |
+
# 处理参考音频格式
|
| 659 |
+
if isinstance(ref_wav, tuple) and len(ref_wav) == 2:
|
| 660 |
+
if isinstance(ref_wav[0], np.ndarray):
|
| 661 |
+
ref_data, ref_sr = ref_wav
|
| 662 |
+
else:
|
| 663 |
+
ref_sr, ref_data = ref_wav
|
| 664 |
+
|
| 665 |
+
# 确保是单声道
|
| 666 |
+
if len(ref_data.shape) > 1 and ref_data.shape[1] > 1:
|
| 667 |
+
ref_data = np.mean(ref_data, axis=1)
|
| 668 |
+
|
| 669 |
+
# 重采样到24kHz
|
| 670 |
+
if ref_sr != 24000:
|
| 671 |
+
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
|
| 672 |
+
ref_tensor = torchaudio.functional.resample(ref_tensor, ref_sr, 24000)
|
| 673 |
+
ref_sr = 24000
|
| 674 |
+
else:
|
| 675 |
+
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
|
| 676 |
+
|
| 677 |
+
# 归一化音量
|
| 678 |
+
ref_tensor = ref_tensor / (torch.max(torch.abs(ref_tensor)) + 1e-6) * 0.95
|
| 679 |
+
else:
|
| 680 |
+
raise ValueError("Invalid reference audio format")
|
| 681 |
+
|
| 682 |
+
# 打印debug信息
|
| 683 |
+
print(f"Reference audio shape: {ref_tensor.shape}, sample rate: {ref_sr}")
|
| 684 |
+
if style_ref_text:
|
| 685 |
+
print(f"Style reference text: {style_ref_text}, language: {style_ref_text_language}")
|
| 686 |
+
|
| 687 |
+
# 保存上传的音频
|
| 688 |
+
torchaudio.save(temp_ref_path, ref_tensor, ref_sr)
|
| 689 |
+
|
| 690 |
+
if timbre_ref_wav is not None:
|
| 691 |
+
if isinstance(timbre_ref_wav, tuple) and len(timbre_ref_wav) == 2:
|
| 692 |
+
if isinstance(timbre_ref_wav[0], np.ndarray):
|
| 693 |
+
timbre_data, timbre_sr = timbre_ref_wav
|
| 694 |
+
else:
|
| 695 |
+
timbre_sr, timbre_data = timbre_ref_wav
|
| 696 |
+
|
| 697 |
+
# 确保是单声道
|
| 698 |
+
if len(timbre_data.shape) > 1 and timbre_data.shape[1] > 1:
|
| 699 |
+
timbre_data = np.mean(timbre_data, axis=1)
|
| 700 |
+
|
| 701 |
+
# 重采样到24kHz
|
| 702 |
+
if timbre_sr != 24000:
|
| 703 |
+
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
|
| 704 |
+
timbre_tensor = torchaudio.functional.resample(timbre_tensor, timbre_sr, 24000)
|
| 705 |
+
timbre_sr = 24000
|
| 706 |
+
else:
|
| 707 |
+
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
|
| 708 |
+
|
| 709 |
+
# 归一化音量
|
| 710 |
+
timbre_tensor = timbre_tensor / (torch.max(torch.abs(timbre_tensor)) + 1e-6) * 0.95
|
| 711 |
+
|
| 712 |
+
print(f"Timbre reference audio shape: {timbre_tensor.shape}, sample rate: {timbre_sr}")
|
| 713 |
+
torchaudio.save(temp_timbre_path, timbre_tensor, timbre_sr)
|
| 714 |
+
else:
|
| 715 |
+
raise ValueError("Invalid timbre reference audio format")
|
| 716 |
+
else:
|
| 717 |
+
temp_timbre_path = temp_ref_path
|
| 718 |
+
|
| 719 |
+
try:
|
| 720 |
+
# 获取管道
|
| 721 |
+
pipeline = get_pipeline("tts")
|
| 722 |
+
|
| 723 |
+
# 推理
|
| 724 |
+
gen_audio = pipeline.inference_ar_and_fm(
|
| 725 |
+
src_wav_path=None,
|
| 726 |
+
src_text=text,
|
| 727 |
+
style_ref_wav_path=temp_ref_path,
|
| 728 |
+
timbre_ref_wav_path=temp_timbre_path,
|
| 729 |
+
style_ref_wav_text=style_ref_text,
|
| 730 |
+
src_text_language=src_language,
|
| 731 |
+
style_ref_wav_text_language=style_ref_text_language,
|
| 732 |
+
)
|
| 733 |
+
|
| 734 |
+
# 检查生成音频是否为数值异常
|
| 735 |
+
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
|
| 736 |
+
print("Warning: Generated audio contains NaN or Inf values")
|
| 737 |
+
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
|
| 738 |
+
|
| 739 |
+
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
|
| 740 |
+
|
| 741 |
+
# 保存生成的音频
|
| 742 |
+
save_audio(gen_audio, output_path=output_path)
|
| 743 |
+
|
| 744 |
+
return output_path
|
| 745 |
+
except Exception as e:
|
| 746 |
+
print(f"Error during processing: {e}")
|
| 747 |
+
import traceback
|
| 748 |
+
traceback.print_exc()
|
| 749 |
+
raise e
|
| 750 |
+
|
| 751 |
+
# 创建Gradio界面
|
| 752 |
+
with gr.Blocks(title="Vevo DEMO") as demo:
|
| 753 |
+
gr.Markdown("# Vevo DEMO")
|
| 754 |
+
# 添加链接标签行
|
| 755 |
+
with gr.Row(elem_id="links_row"):
|
| 756 |
+
gr.HTML("""
|
| 757 |
+
<div style="display: flex; justify-content: flex-start; gap: 8px; margin: 0 0; padding-left: 0px;">
|
| 758 |
+
<a href="https://arxiv.org/abs/2502.07243" target="_blank" style="text-decoration: none;">
|
| 759 |
+
<img alt="arXiv Paper" src="https://img.shields.io/badge/arXiv-Paper-red">
|
| 760 |
+
</a>
|
| 761 |
+
<a href="https://openreview.net/pdf?id=anQDiQZhDP" target="_blank" style="text-decoration: none;">
|
| 762 |
+
<img alt="ICLR Paper" src="https://img.shields.io/badge/ICLR-Paper-64b63a">
|
| 763 |
+
</a>
|
| 764 |
+
<a href="https://huggingface.co/amphion/Vevo" target="_blank" style="text-decoration: none;">
|
| 765 |
+
<img alt="HuggingFace Model" src="https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow">
|
| 766 |
+
</a>
|
| 767 |
+
<a href="https://github.com/open-mmlab/Amphion/tree/main/models/vc/vevo" target="_blank" style="text-decoration: none;">
|
| 768 |
+
<img alt="GitHub Repo" src="https://img.shields.io/badge/GitHub-Repo-blue">
|
| 769 |
+
</a>
|
| 770 |
+
</div>
|
| 771 |
+
""")
|
| 772 |
+
|
| 773 |
+
with gr.Tab("Vevo-Timbre"):
|
| 774 |
+
gr.Markdown("### Vevo-Timbre: Maintain style but transfer timbre")
|
| 775 |
+
with gr.Row():
|
| 776 |
+
with gr.Column():
|
| 777 |
+
timbre_content = gr.Audio(label="Source Audio", type="numpy")
|
| 778 |
+
timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
|
| 779 |
+
timbre_button = gr.Button("Generate")
|
| 780 |
+
with gr.Column():
|
| 781 |
+
timbre_output = gr.Audio(label="Result")
|
| 782 |
+
timbre_button.click(vevo_timbre, inputs=[timbre_content, timbre_reference], outputs=timbre_output)
|
| 783 |
+
|
| 784 |
+
with gr.Tab("Vevo-Style"):
|
| 785 |
+
gr.Markdown("### Vevo-Style: Maintain timbre but transfer style (accent, emotion, etc.)")
|
| 786 |
+
with gr.Row():
|
| 787 |
+
with gr.Column():
|
| 788 |
+
style_content = gr.Audio(label="Source Audio", type="numpy")
|
| 789 |
+
style_reference = gr.Audio(label="Style Reference", type="numpy")
|
| 790 |
+
style_button = gr.Button("Generate")
|
| 791 |
+
with gr.Column():
|
| 792 |
+
style_output = gr.Audio(label="Result")
|
| 793 |
+
style_button.click(vevo_style, inputs=[style_content, style_reference], outputs=style_output)
|
| 794 |
+
|
| 795 |
+
with gr.Tab("Vevo-Voice"):
|
| 796 |
+
gr.Markdown("### Vevo-Voice: Transfers both style and timbre with separate references")
|
| 797 |
+
with gr.Row():
|
| 798 |
+
with gr.Column():
|
| 799 |
+
voice_content = gr.Audio(label="Source Audio", type="numpy")
|
| 800 |
+
voice_style_reference = gr.Audio(label="Style Reference", type="numpy")
|
| 801 |
+
voice_timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
|
| 802 |
+
voice_button = gr.Button("Generate")
|
| 803 |
+
with gr.Column():
|
| 804 |
+
voice_output = gr.Audio(label="Result")
|
| 805 |
+
voice_button.click(vevo_voice, inputs=[voice_content, voice_style_reference, voice_timbre_reference], outputs=voice_output)
|
| 806 |
+
|
| 807 |
+
|
| 808 |
+
|
| 809 |
+
with gr.Tab("Vevo-TTS"):
|
| 810 |
+
gr.Markdown("### Vevo-TTS: Text-to-speech with separate style and timbre references")
|
| 811 |
+
with gr.Row():
|
| 812 |
+
with gr.Column():
|
| 813 |
+
tts_text = gr.Textbox(label="Target Text", placeholder="Enter text to synthesize...", lines=3)
|
| 814 |
+
tts_src_language = gr.Dropdown(["en", "zh", "de", "fr", "ja", "ko"], label="Text Language", value="en")
|
| 815 |
+
tts_reference = gr.Audio(label="Style Reference", type="numpy")
|
| 816 |
+
tts_style_ref_text = gr.Textbox(label="Style Reference Text", placeholder="Enter style reference text...", lines=3)
|
| 817 |
+
tts_style_ref_text_language = gr.Dropdown(["en", "zh", "de", "fr", "ja", "ko"], label="Style Reference Text Language", value="en")
|
| 818 |
+
tts_timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
|
| 819 |
+
tts_button = gr.Button("Generate")
|
| 820 |
+
with gr.Column():
|
| 821 |
+
tts_output = gr.Audio(label="Result")
|
| 822 |
+
|
| 823 |
+
tts_button.click(
|
| 824 |
+
vevo_tts,
|
| 825 |
+
inputs=[tts_text, tts_reference, tts_timbre_reference, tts_style_ref_text, tts_src_language, tts_style_ref_text_language],
|
| 826 |
+
outputs=tts_output
|
| 827 |
+
)
|
| 828 |
+
|
| 829 |
+
gr.Markdown("""
|
| 830 |
+
## About VEVO
|
| 831 |
+
VEVO is a versatile voice synthesis and conversion model that offers four main functionalities:
|
| 832 |
+
1. **Vevo-Style**: Maintains timbre but transfers style (accent, emotion, etc.)
|
| 833 |
+
2. **Vevo-Timbre**: Maintains style but transfers timbre
|
| 834 |
+
3. **Vevo-Voice**: Transfers both style and timbre with separate references
|
| 835 |
+
4. **Vevo-TTS**: Text-to-speech with separate style and timbre references
|
| 836 |
+
|
| 837 |
+
For more information, visit the [Amphion project](https://github.com/open-mmlab/Amphion)
|
| 838 |
+
""")
|
| 839 |
+
|
| 840 |
+
# 启动应用
|
| 841 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=3.50.2
|
| 2 |
+
torch>=2.0.0
|
| 3 |
+
torchaudio>=2.0.0
|
| 4 |
+
numpy>=1.20.0
|
| 5 |
+
huggingface_hub>=0.14.1
|
| 6 |
+
librosa>=0.9.2
|
| 7 |
+
PyYAML>=6.0
|
| 8 |
+
accelerate>=0.20.3
|
| 9 |
+
safetensors>=0.3.1
|
| 10 |
+
phonemizer>=3.2.0
|
| 11 |
+
setuptools
|
| 12 |
+
onnxruntime
|
| 13 |
+
transformers==4.41.2
|
| 14 |
+
unidecode
|
| 15 |
+
scipy>=1.12.0
|
| 16 |
+
encodec
|
| 17 |
+
g2p_en
|
| 18 |
+
jieba
|
| 19 |
+
cn2an
|
| 20 |
+
pypinyin
|
| 21 |
+
langsegment==0.2.0
|
| 22 |
+
pyopenjtalk
|
| 23 |
+
pykakasi
|
| 24 |
+
json5
|
| 25 |
+
black>=24.1.1
|
| 26 |
+
ruamel.yaml
|
| 27 |
+
tqdm
|
| 28 |
+
openai-whisper
|
| 29 |
+
ipython
|
| 30 |
+
pyworld
|