Spaces:
Configuration error
Configuration error
Commit
·
0faafc9
1
Parent(s):
6ec52a1
support long text synthesis
Browse files
app.py
CHANGED
|
@@ -45,6 +45,77 @@ def detect_speech_language(speech_file):
|
|
| 45 |
_, probs = whisper_model.detect_language(mel)
|
| 46 |
return max(probs, key=probs.get)
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
@torch.no_grad()
|
| 50 |
def get_prompt_text(speech_16k, language):
|
|
@@ -320,43 +391,51 @@ def maskgct_inference(
|
|
| 320 |
rescale_cfg_s2a=0.75,
|
| 321 |
device=torch.device("cuda:0"),
|
| 322 |
):
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
acoustic_code
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
|
| 358 |
|
| 359 |
-
@spaces.GPU
|
| 360 |
def inference(
|
| 361 |
prompt_wav,
|
| 362 |
target_text,
|
|
@@ -398,7 +477,7 @@ iface = gr.Interface(
|
|
| 398 |
fn=inference,
|
| 399 |
inputs=[
|
| 400 |
gr.Audio(label="Upload Prompt Wav", type="filepath"),
|
| 401 |
-
gr.Textbox(label="Target Text"),
|
| 402 |
gr.Number(
|
| 403 |
label="Target Duration (in seconds), if the target duration is less than 0, the system will estimate a duration.", value=-1
|
| 404 |
), # Removed 'optional=True'
|
|
|
|
| 45 |
_, probs = whisper_model.detect_language(mel)
|
| 46 |
return max(probs, key=probs.get)
|
| 47 |
|
| 48 |
+
def is_chinese(string):
|
| 49 |
+
"""
|
| 50 |
+
check if the string contains any Chinese character
|
| 51 |
+
:return: bool
|
| 52 |
+
"""
|
| 53 |
+
for ch in string:
|
| 54 |
+
if u'\u4e00' <= ch <= u'\u9fff':
|
| 55 |
+
return True
|
| 56 |
+
return False
|
| 57 |
+
|
| 58 |
+
def is_english(string):
|
| 59 |
+
"""
|
| 60 |
+
check if the string contains any English leter
|
| 61 |
+
:return: bool
|
| 62 |
+
"""
|
| 63 |
+
for ch in string:
|
| 64 |
+
if ch.isalpha():
|
| 65 |
+
return True
|
| 66 |
+
return False
|
| 67 |
+
|
| 68 |
+
def preprocess(sentence):
|
| 69 |
+
if is_chinese(sentence[-1]) or is_english(sentence[-1]):
|
| 70 |
+
sentence = sentence + "。"
|
| 71 |
+
if sentence[-1] == "!":
|
| 72 |
+
sentence = sentence[0:-1] + "!"
|
| 73 |
+
elif sentence[-1] == "?":
|
| 74 |
+
sentence = sentence[0:-1] + "?"
|
| 75 |
+
elif sentence[-1] not in ["?", "!"] :
|
| 76 |
+
sentence = sentence[0:-1] +"。"
|
| 77 |
+
return sentence
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def split_paragraph(text):
|
| 81 |
+
sentences = []
|
| 82 |
+
first_punt_list = ";!?。!?;…"
|
| 83 |
+
second_punc_list = first_punt_list + ", ,"
|
| 84 |
+
third_punt_list = second_punc_list + "」)》”’』])>\"']】 "
|
| 85 |
+
|
| 86 |
+
fisrt_punc_check_start = 5
|
| 87 |
+
second_punc_check_start = 40
|
| 88 |
+
third_punc_check_start = 60
|
| 89 |
+
force_seg_len = 80
|
| 90 |
+
cur_length = 0.0
|
| 91 |
+
temp_sent = ""
|
| 92 |
+
for char in text:
|
| 93 |
+
temp_sent = temp_sent + char
|
| 94 |
+
if is_english(char):
|
| 95 |
+
cur_length = cur_length + 0.3
|
| 96 |
+
elif is_chinese(char):
|
| 97 |
+
cur_length = cur_length + 1
|
| 98 |
+
else:
|
| 99 |
+
cur_length = cur_length + 0.6
|
| 100 |
+
if cur_length < fisrt_punc_check_start:
|
| 101 |
+
continue
|
| 102 |
+
do_split = False
|
| 103 |
+
if char in first_punt_list:
|
| 104 |
+
do_split = True
|
| 105 |
+
elif cur_length > second_punc_check_start and char in second_punc_list:
|
| 106 |
+
do_split = True
|
| 107 |
+
elif cur_length > third_punc_check_start and char in third_punt_list:
|
| 108 |
+
do_split = True
|
| 109 |
+
elif cur_length > force_seg_len:
|
| 110 |
+
do_split = True
|
| 111 |
+
if do_split:
|
| 112 |
+
sentences.append(temp_sent)
|
| 113 |
+
cur_length = 0
|
| 114 |
+
temp_sent = ""
|
| 115 |
+
if len(temp_sent):
|
| 116 |
+
sentences.append(temp_sent)
|
| 117 |
+
return sentences
|
| 118 |
+
|
| 119 |
|
| 120 |
@torch.no_grad()
|
| 121 |
def get_prompt_text(speech_16k, language):
|
|
|
|
| 391 |
rescale_cfg_s2a=0.75,
|
| 392 |
device=torch.device("cuda:0"),
|
| 393 |
):
|
| 394 |
+
sentences = split_paragraph(target_text)
|
| 395 |
+
total_recovered_audio = None
|
| 396 |
+
print("split_paragraph: before:", target_text, "\nafter:", sentences)
|
| 397 |
+
for sentence in sentences:
|
| 398 |
+
target_text = preprocess(sentence)
|
| 399 |
+
speech_16k = librosa.load(prompt_speech_path, sr=16000)[0]
|
| 400 |
+
speech = librosa.load(prompt_speech_path, sr=24000)[0]
|
| 401 |
+
prompt_language = detect_speech_language(prompt_speech_path)
|
| 402 |
+
full_prompt_text, short_prompt_text, shot_prompt_end_ts = get_prompt_text(prompt_speech_path,
|
| 403 |
+
prompt_language)
|
| 404 |
+
# use the first 4+ seconds wav as the prompt in case the prompt wav is too long
|
| 405 |
+
speech = speech[0: int(shot_prompt_end_ts * 24000)]
|
| 406 |
+
speech_16k = speech_16k[0: int(shot_prompt_end_ts*16000)]
|
| 407 |
+
|
| 408 |
+
target_language = detect_text_language(target_text)
|
| 409 |
+
combine_semantic_code, _ = text2semantic(
|
| 410 |
+
device,
|
| 411 |
+
speech_16k,
|
| 412 |
+
short_prompt_text,
|
| 413 |
+
prompt_language,
|
| 414 |
+
target_text,
|
| 415 |
+
target_language,
|
| 416 |
+
target_len,
|
| 417 |
+
n_timesteps,
|
| 418 |
+
cfg,
|
| 419 |
+
rescale_cfg,
|
| 420 |
+
)
|
| 421 |
+
acoustic_code = extract_acoustic_code(torch.tensor(speech).unsqueeze(0).to(device))
|
| 422 |
+
_, recovered_audio = semantic2acoustic(
|
| 423 |
+
device,
|
| 424 |
+
combine_semantic_code,
|
| 425 |
+
acoustic_code,
|
| 426 |
+
n_timesteps=n_timesteps_s2a,
|
| 427 |
+
cfg=cfg_s2a,
|
| 428 |
+
rescale_cfg=rescale_cfg_s2a,
|
| 429 |
+
)
|
| 430 |
+
print("finish text:", target_text)
|
| 431 |
+
if total_recovered_audio is None:
|
| 432 |
+
total_recovered_audio = recovered_audio
|
| 433 |
+
else:
|
| 434 |
+
total_recovered_audio = np.concatenate([total_recovered_audio, recovered_audio])
|
| 435 |
+
return total_recovered_audio
|
| 436 |
|
| 437 |
|
| 438 |
+
@spaces.GPU(duration=300)
|
| 439 |
def inference(
|
| 440 |
prompt_wav,
|
| 441 |
target_text,
|
|
|
|
| 477 |
fn=inference,
|
| 478 |
inputs=[
|
| 479 |
gr.Audio(label="Upload Prompt Wav", type="filepath"),
|
| 480 |
+
gr.Textbox(label="Target Text", max_length=1024),
|
| 481 |
gr.Number(
|
| 482 |
label="Target Duration (in seconds), if the target duration is less than 0, the system will estimate a duration.", value=-1
|
| 483 |
), # Removed 'optional=True'
|