Spaces:
Runtime error
Runtime error
File size: 45,027 Bytes
4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 96380e2 4bc6908 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 |
import io
import os
from datetime import datetime, date
from typing import Dict, List, Optional, Tuple
import smtplib
import ssl
from email.message import EmailMessage
import pandas as pd
import plotly.express as px
import streamlit as st
# -----------------------------
# App Configuration
# -----------------------------
st.set_page_config(
page_title="Tableau de bord des inscriptions",
page_icon="🧭",
layout="wide",
initial_sidebar_state="expanded",
)
# -----------------------------
# Utilities
# -----------------------------
def try_parse_datetime(series: pd.Series) -> pd.Series:
"""Attempt to parse a pandas Series as datetimes, returning original on failure."""
if pd.api.types.is_datetime64_any_dtype(series):
return series
try:
parsed = pd.to_datetime(series, errors="coerce")
if parsed.notna().sum() >= max(3, int(0.2 * len(parsed))):
return parsed
except Exception:
pass
return series
def make_unique_columns(columns: List[str]) -> List[str]:
"""Ensure column names are unique by appending suffixes (2), (3), ..."""
seen: Dict[str, int] = {}
unique_cols: List[str] = []
for name in columns:
base = str(name)
if base not in seen:
seen[base] = 1
unique_cols.append(base)
else:
seen[base] += 1
unique_cols.append(f"{base} ({seen[base]})")
return unique_cols
def normalize_label(text: str) -> str:
t = str(text).lower().strip()
t = t.replace("\u00a0", " ").replace(" ", " ")
t = " ".join(t.split())
return t
def find_column(df: pd.DataFrame, candidates: List[str]) -> Optional[str]:
"""Return the first matching column by normalized name from candidates."""
norm_to_col = {normalize_label(c): c for c in df.columns}
for cand in candidates:
n = normalize_label(cand)
if n in norm_to_col:
return norm_to_col[n]
return None
def infer_pandas_types(df: pd.DataFrame) -> Dict[str, str]:
"""Return a mapping of column -> inferred logical type: 'categorical' | 'numeric' | 'date' | 'text'."""
type_map: Dict[str, str] = {}
for col in df.columns:
s = df[col]
if pd.api.types.is_datetime64_any_dtype(s):
type_map[col] = "date"
elif pd.api.types.is_bool_dtype(s):
type_map[col] = "categorical"
elif pd.api.types.is_numeric_dtype(s):
type_map[col] = "numeric"
else:
# try parse datetime heuristic
parsed = try_parse_datetime(s)
if pd.api.types.is_datetime64_any_dtype(parsed):
type_map[col] = "date"
else:
# if low cardinality, treat as categorical
nunique = s.astype(str).nunique(dropna=True)
type_map[col] = "categorical" if nunique <= max(50, len(s) * 0.05) else "text"
return type_map
def dynamic_filters(df: pd.DataFrame, type_map: Dict[str, str]) -> pd.DataFrame:
"""Render dynamic filters for all columns and return the filtered DataFrame."""
filtered = df.copy()
st.sidebar.markdown("### 🔎 Filtres dynamiques")
for col in filtered.columns:
logical = type_map.get(col, "text")
if logical == "numeric" and pd.api.types.is_numeric_dtype(filtered[col]):
series_num = pd.to_numeric(filtered[col], errors="coerce")
valid = series_num.dropna()
if valid.empty:
st.sidebar.caption(f"{col}: aucune valeur numérique exploitable")
continue
min_v = float(valid.min())
max_v = float(valid.max())
if min_v == max_v:
st.sidebar.caption(f"{col}: valeur unique {min_v}")
# Filtrage inutile car une seule valeur
continue
vmin, vmax = st.sidebar.slider(f"{col} (min-max)", min_value=min_v, max_value=max_v, value=(min_v, max_v))
filtered = filtered[(series_num >= vmin) & (series_num <= vmax)]
elif logical == "date":
parsed = try_parse_datetime(filtered[col])
if pd.api.types.is_datetime64_any_dtype(parsed):
dmin = parsed.min()
dmax = parsed.max()
start_end = st.sidebar.date_input(f"{col} (période)", value=(dmin.date() if pd.notna(dmin) else date.today(), dmax.date() if pd.notna(dmax) else date.today()))
if isinstance(start_end, tuple) and len(start_end) == 2:
start, end = start_end
mask = (parsed.dt.date >= start) & (parsed.dt.date <= end)
filtered = filtered[mask]
else:
# categorical or text -> multiselect of unique values (with limit)
uniques = filtered[col].dropna().astype(str).unique().tolist()
uniques = sorted(uniques)[:200]
selected = st.sidebar.multiselect(f"{col}", options=uniques, default=[])
if selected:
filtered = filtered[filtered[col].astype(str).isin(selected)]
return filtered
def apply_search(df: pd.DataFrame, query: str) -> pd.DataFrame:
if not query:
return df
q = query.strip().lower()
mask = pd.Series(False, index=df.index)
for col in df.columns:
col_values = df[col].astype(str).str.lower()
mask = mask | col_values.str.contains(q, na=False)
return df[mask]
def to_excel_bytes(df: pd.DataFrame) -> bytes:
buffer = io.BytesIO()
with pd.ExcelWriter(buffer, engine="xlsxwriter") as writer:
df.to_excel(writer, index=False, sheet_name="inscriptions")
return buffer.getvalue()
def kpi_card(label: str, value: str):
st.markdown(
f"""
<div class="card kpi">
<div class="card-label">{label}</div>
<div class="card-value">{value}</div>
</div>
""",
unsafe_allow_html=True,
)
def chart_card(title: str, fig):
st.markdown(f"<div class=\"card\"><div class=\"card-title\">{title}</div>", unsafe_allow_html=True)
st.plotly_chart(fig, use_container_width=True, theme=None)
st.markdown("</div>", unsafe_allow_html=True)
def inject_base_css():
# Créer le dossier assets s'il n'existe pas
if not os.path.exists("assets"):
os.makedirs("assets")
# Créer le fichier CSS s'il n'existe pas
css_file = os.path.join("assets", "styles.css")
if not os.path.exists(css_file):
with open(css_file, "w", encoding="utf-8") as f:
f.write("""
.card {
background-color: var(--card);
border-radius: 0.5rem;
padding: 1rem;
margin-bottom: 1rem;
box-shadow: 0 1px 3px rgba(0,0,0,0.12), 0 1px 2px rgba(0,0,0,0.24);
}
.card-title {
font-weight: bold;
font-size: 1.2rem;
margin-bottom: 0.5rem;
color: var(--primary);
}
.kpi {
text-align: center;
padding: 1rem;
}
.card-label {
font-size: 1rem;
color: var(--muted);
}
.card-value {
font-size: 2rem;
font-weight: bold;
color: var(--primary);
}
""")
# Lire et injecter le CSS
with open(css_file, "r", encoding="utf-8") as f:
css = f.read()
st.markdown(f"<style>{css}</style>", unsafe_allow_html=True)
def safe_format_template(template: str, row: Dict[str, object]) -> str:
class SafeDict(dict):
def __missing__(self, key):
return ""
flat = {str(k): ("" if v is None else str(v)) for k, v in row.items()}
try:
return template.format_map(SafeDict(flat))
except Exception:
return template
def send_email_smtp(
smtp_host: str,
smtp_port: int,
sender_email: str,
sender_password: str,
use_tls: bool,
to_email: str,
subject: str,
body_text: str,
reply_to: Optional[str] = None,
) -> None:
message = EmailMessage()
message["From"] = sender_email
message["To"] = to_email
message["Subject"] = subject
if reply_to:
message["Reply-To"] = reply_to
message.set_content(body_text)
if use_tls:
context = ssl.create_default_context()
with smtplib.SMTP(smtp_host, smtp_port) as server:
server.starttls(context=context)
if sender_password:
server.login(sender_email, sender_password)
server.send_message(message)
else:
with smtplib.SMTP_SSL(smtp_host, smtp_port) as server:
if sender_password:
server.login(sender_email, sender_password)
server.send_message(message)
def set_theme_variables(mode: str):
# Adjust CSS variables for light/dark for cards and text; Plotly handled via template
palette = {
"light": {
"--bg": "#f7f9fc",
"--card": "#ffffff",
"--text": "#0f172a",
"--muted": "#64748b",
"--primary": "#0ea5e9",
"--accent": "#10b981",
"--border": "#e5e7eb",
},
"dark": {
"--bg": "#0b1220",
"--card": "#111827",
"--text": "#e5e7eb",
"--muted": "#94a3b8",
"--primary": "#38bdf8",
"--accent": "#34d399",
"--border": "#1f2937",
},
}
colors = palette.get(mode, palette["light"])
styles = ":root{" + ";".join([f"{k}:{v}" for k, v in colors.items()]) + "}"
st.markdown(f"<style>{styles}</style>", unsafe_allow_html=True)
def get_plotly_template(mode: str) -> str:
return "plotly_dark" if mode == "dark" else "plotly_white"
# -----------------------------
# Sidebar: Logo, Upload, Theme, Column mapping
# -----------------------------
def sidebar_controls() -> Tuple[Optional[pd.DataFrame], Dict[str, str], str, Dict[str, str], List[str]]:
st.sidebar.markdown("## ⚙️ Contrôles")
# Theme
mode = st.sidebar.radio("Thème", options=["clair", "sombre"], horizontal=True, index=0)
theme_mode = "dark" if mode == "sombre" else "light"
set_theme_variables(theme_mode)
# Logo (optional)
logo_path = os.path.join("assets", "logo.png")
if os.path.exists(logo_path):
st.sidebar.image(logo_path, use_column_width=True)
uploaded = st.sidebar.file_uploader("Importer un fichier Excel (.xlsx)", type=["xlsx"])
df: Optional[pd.DataFrame] = None
if uploaded is not None:
try:
# Read first sheet by default
df = pd.read_excel(uploaded, sheet_name=0)
# Strip column names
df.columns = [str(c).strip() for c in df.columns]
# Ensure unique column names
if pd.Index(df.columns).has_duplicates:
df.columns = make_unique_columns(list(df.columns))
# Stocker dans session state pour les autres onglets
st.session_state['df'] = df
st.session_state['filtered_df'] = df.copy()
except Exception as e:
st.sidebar.error(f"Erreur de lecture du fichier: {e}")
else:
# Récupérer les données du session state si disponible
if 'df' in st.session_state:
df = st.session_state['df']
logical_types: Dict[str, str] = {}
coercions: Dict[str, str] = {}
unique_keys: List[str] = []
if df is not None and not df.empty:
st.sidebar.markdown("---")
st.sidebar.markdown("### 🧹 Nettoyage & types")
# Global cleaning options
trim_spaces = st.sidebar.checkbox("Supprimer les espaces autour du texte", value=True)
lower_case = st.sidebar.checkbox("Mettre le texte en minuscules", value=False)
drop_dupes = st.sidebar.checkbox("Supprimer les doublons", value=False)
dedup_subset_cols: List[str] = []
dedup_keep_choice = "first"
if drop_dupes:
dedup_subset_cols = st.sidebar.multiselect(
"Colonnes à considérer (vide = toutes)", options=list(df.columns), help="Sélectionnez les colonnes sur lesquelles détecter les doublons."
)
dedup_keep_choice = st.sidebar.selectbox(
"Conserver",
options=["first", "last", "none"],
index=0,
help="Quelle occurrence conserver pour chaque doublon détecté",
)
fillna_blank = st.sidebar.checkbox("Remplacer NaN texte par vide", value=True)
# Remove selected columns
drop_columns = st.sidebar.multiselect(
"Enlever des colonnes",
options=list(df.columns),
default=[],
help="Supprimer des champs du jeu de données avant l'analyse",
key="clean_drop_cols",
)
if drop_columns:
df.drop(columns=drop_columns, inplace=True, errors="ignore")
# Infer and allow override per column
inferred = infer_pandas_types(df)
for col in df.columns:
logical_types[col] = st.sidebar.selectbox(
f"Type pour {col}", options=["categorical", "numeric", "date", "text"], index=["categorical", "numeric", "date", "text"].index(inferred.get(col, "text"))
)
# Optional coercion
if logical_types[col] in ("numeric", "date"):
coercions[col] = logical_types[col]
# Apply cleaning
for col in df.columns:
if df[col].dtype == object:
if trim_spaces:
df[col] = df[col].astype(str).str.strip()
if lower_case:
df[col] = df[col].astype(str).str.lower()
if fillna_blank:
df[col] = df[col].replace({pd.NA: "", None: ""})
# Coerce types
if coercions.get(col) == "numeric":
df[col] = pd.to_numeric(df[col], errors="coerce")
elif coercions.get(col) == "date":
df[col] = try_parse_datetime(df[col])
if drop_dupes:
keep_arg = None if dedup_keep_choice == "none" else dedup_keep_choice
df.drop_duplicates(subset=(dedup_subset_cols if dedup_subset_cols else None), keep=keep_arg, inplace=True)
# Unique person keys
st.sidebar.markdown("---")
st.sidebar.markdown("### 👤 Personne unique")
# Heuristic suggestions
hints = ["email", "e-mail", "mail", "id", "identifiant", "cin", "passport", "matricule", "phone", "téléphone", "telephone", "tel"]
suggested = [c for c in df.columns if any(h in c.lower() for h in hints)]
unique_keys = st.sidebar.multiselect(
"Champs d'unicité (sélection multiple)", options=list(df.columns), default=suggested, help="Sélectionnez les champs qui identifient de façon unique une personne."
)
# Stocker les types et clés dans session state
st.session_state['logical_types'] = logical_types
st.session_state['unique_keys'] = unique_keys
st.session_state['filtered_df'] = df.copy()
return df, logical_types, theme_mode, coercions, unique_keys
# -----------------------------
# Page: Tableau de bord
# -----------------------------
def page_tableau_de_bord():
st.markdown("<h2>📊 Tableau de bord</h2>", unsafe_allow_html=True)
if 'df' not in st.session_state or st.session_state['df'] is None:
st.markdown(
"""
<div class="card">
<div class="card-title">Bienvenue 👋</div>
<p>Importez un fichier <b>.xlsx</b> contenant vos inscriptions pour commencer l'analyse.</p>
<ul>
<li>Assurez-vous que les colonnes principales (pays, formation, statut, date) sont présentes.</li>
<li>Vous pourrez mapper les colonnes dans la barre latérale.</li>
</ul>
</div>
""",
unsafe_allow_html=True,
)
return
df = st.session_state['df']
type_map = st.session_state.get('logical_types', {})
unique_keys = st.session_state.get('unique_keys', [])
theme_mode = "dark" if st.session_state.get('theme_mode') == "dark" else "light"
plotly_template = get_plotly_template(theme_mode)
# Filters (dynamic for all columns)
st.sidebar.markdown("---")
filtered_df = dynamic_filters(df, type_map)
# Optional unique-person filtering using selected keys
st.sidebar.markdown("### 👤 Filtrer par personne unique")
if unique_keys:
person_filter = st.sidebar.checkbox("Activer le filtre d'unicité (drop_duplicates)", value=False, key="unique_filter_toggle")
keep_strategy = st.sidebar.selectbox("Conserver", options=["first", "last"], index=0, key="unique_filter_keep")
if person_filter:
try:
filtered_df = filtered_df.drop_duplicates(subset=unique_keys, keep=keep_strategy)
except Exception:
st.sidebar.warning("Impossible d'appliquer le filtre d'unicité. Vérifiez les champs choisis.")
# Mettre à jour le dataframe filtré dans session state
st.session_state['filtered_df'] = filtered_df
# KPIs
total_count = len(filtered_df)
total_columns = filtered_df.shape[1]
total_missing = int(filtered_df.isna().sum().sum())
approx_dupes = int(filtered_df.duplicated().sum())
c1, c2, c3, c4 = st.columns(4)
with c1:
kpi_card("Lignes", f"{total_count:,}")
with c2:
kpi_card("Colonnes", f"{total_columns:,}")
with c3:
kpi_card("Valeurs manquantes", f"{total_missing:,}")
with c4:
kpi_card("Doublons (approx)", f"{approx_dupes:,}")
# Unique persons KPI (based on selected keys)
if unique_keys:
try:
uniq = (
filtered_df.dropna(subset=unique_keys)[unique_keys]
.astype(str)
.drop_duplicates()
.shape[0]
)
except Exception:
uniq = 0
c5, _ = st.columns([1, 3])
with c5:
kpi_card("Personnes uniques", f"{uniq:,}")
# Charts row 1: Program distribution, Country distribution
st.markdown("<div class=\"card\"><div class=\"card-title\">Répartitions clés</div>", unsafe_allow_html=True)
ctrl1, ctrl2, ctrl3 = st.columns([1,1,2])
with ctrl1:
topn = st.slider("Top N", min_value=3, max_value=50, value=10, step=1)
with ctrl2:
sort_dir = st.selectbox("Tri", options=["desc", "asc"], index=0)
with ctrl3:
st.caption("Appliqué aux graphiques de répartition ci-dessous")
charts_row_1 = st.columns(2)
# Choose any categorical column for distribution 1
cat_cols_all = [c for c in filtered_df.columns if type_map.get(c) in ("categorical", "text")]
if cat_cols_all and not filtered_df.empty:
dim1 = st.selectbox("Dimension 1 (répartition)", options=cat_cols_all, key="rep_dim1")
program_counts = (
filtered_df.groupby(dim1).size().reset_index(name="count").sort_values("count", ascending=(sort_dir=="asc"))
.head(topn)
)
fig_prog = px.bar(
program_counts,
x=dim1,
y="count",
template=plotly_template,
color_continuous_scale="Blues",
)
fig_prog.update_layout(margin=dict(l=10, r=10, t=10, b=10))
with charts_row_1[0]:
chart_card("Répartition (dimension 1)", fig_prog)
if cat_cols_all and not filtered_df.empty:
dim2 = st.selectbox("Dimension 2 (répartition)", options=[c for c in cat_cols_all], index=min(1, len(cat_cols_all)-1), key="rep_dim2")
country_counts = (
filtered_df.groupby(dim2).size().reset_index(name="count").sort_values("count", ascending=(sort_dir=="asc"))
.head(topn)
)
fig_country = px.pie(
country_counts,
names=dim2,
values="count",
template=plotly_template,
hole=0.35,
)
fig_country.update_layout(margin=dict(l=10, r=10, t=10, b=10))
with charts_row_1[1]:
chart_card("Répartition (dimension 2)", fig_country)
st.markdown("</div>", unsafe_allow_html=True)
# Charts row 2: Status distribution
charts_row_2 = st.columns(2)
if cat_cols_all and not filtered_df.empty:
dim3 = st.selectbox("Dimension 3", options=cat_cols_all, key="rep_dim3")
status_counts = (
filtered_df.groupby(dim3).size().reset_index(name="count").sort_values("count", ascending=False)
)
fig_status = px.bar(
status_counts,
x=dim3,
y="count",
template=plotly_template,
color=dim3,
)
fig_status.update_layout(showlegend=False, margin=dict(l=10, r=10, t=10, b=10))
with charts_row_2[0]:
chart_card("Répartition (dimension 3)", fig_status)
# Affichage des données
search_query = st.text_input("Recherche globale", key="search_dashboard")
df_searched = apply_search(filtered_df, search_query)
st.dataframe(df_searched, use_container_width=True, hide_index=True)
# Downloads
csv_bytes = df_searched.to_csv(index=False).encode("utf-8-sig")
xlsx_bytes = to_excel_bytes(df_searched)
dc1, dc2 = st.columns(2)
with dc1:
st.download_button(
"Télécharger CSV",
data=csv_bytes,
file_name="inscriptions_filtrees.csv",
mime="text/csv",
use_container_width=True,
)
with dc2:
st.download_button(
"Télécharger Excel",
data=xlsx_bytes,
file_name="inscriptions_filtrees.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
use_container_width=True,
)
# -----------------------------
# Page: Zone d'analyse
# -----------------------------
def page_analyses():
st.markdown("<h2>📋 Analyses avancées</h2>", unsafe_allow_html=True)
if 'filtered_df' not in st.session_state or st.session_state['filtered_df'] is None:
st.warning("Veuillez d'abord importer et configurer des données dans l'onglet Tableau de bord.")
return
filtered_df = st.session_state['filtered_df']
type_map = st.session_state.get('logical_types', {})
theme_mode = "dark" if st.session_state.get('theme_mode') == "dark" else "light"
plotly_template = get_plotly_template(theme_mode)
# Ad-hoc analysis builder
st.markdown("<div class=\"card\"><div class=\"card-title\">Zone d'analyse</div>", unsafe_allow_html=True)
cat_cols = [c for c in filtered_df.columns if type_map.get(c) in ("categorical", "text")]
if cat_cols:
ac1, ac2, ac3 = st.columns([2,1,1])
with ac1:
dim_col = st.selectbox("Dimension", options=cat_cols)
with ac2:
chart_type = st.selectbox("Type de graphique", options=["Barres", "Camembert"], index=0)
with ac3:
topn_dim = st.slider("Top N (dimension)", 3, 50, 10)
agg = filtered_df.groupby(dim_col).size().reset_index(name="count").sort_values("count", ascending=False).head(topn_dim)
if chart_type == "Barres":
fig = px.bar(agg, x=dim_col, y="count", template=plotly_template)
else:
fig = px.pie(agg, names=dim_col, values="count", template=plotly_template, hole=0.35)
st.plotly_chart(fig, use_container_width=True, theme=None)
st.markdown("</div>", unsafe_allow_html=True)
# Drilldown option (simple): filtrer sur une dimension/valeur
st.markdown("<div class=\"card\"><div class=\"card-title\">Drilldown</div>", unsafe_allow_html=True)
dd_cols = cat_cols
dd1, dd2 = st.columns([1,2])
with dd1:
dd_dim = st.selectbox("Drilldown - dimension", options=[None] + dd_cols)
drill_df = filtered_df.copy()
if dd_dim:
values = [x for x in filtered_df[dd_dim].dropna().astype(str).unique()]
with dd2:
dd_val = st.selectbox("Valeur", options=[None] + values)
if dd_val:
drill_df = filtered_df[filtered_df[dd_dim].astype(str) == dd_val]
search_query = st.text_input("Recherche globale", key="search_analysis")
df_searched = apply_search(drill_df, search_query)
st.dataframe(df_searched, use_container_width=True, hide_index=True)
st.markdown("</div>", unsafe_allow_html=True)
# Decision Maker View (field-aware, optional)
st.markdown("<div class=\"card\"><div class=\"card-title\">Vue Décideur (si champs disponibles)</div>", unsafe_allow_html=True)
# Candidate fields based on provided list
col_email = find_column(filtered_df, ["Email"]) or find_column(filtered_df, ["E-mail"])
col_gender = find_column(filtered_df, ["Genre", "Autre genre (Veuillez préciser) : "])
col_nat = find_column(filtered_df, ["Nationalité"])
col_country = find_column(filtered_df, ["Pays de résidence"]) or find_column(filtered_df, ["D'où préférez-vous participer à l'événement ?"])
col_role = find_column(filtered_df, ["Votre profession / statut", "Autre profession (veuillez préciser)"])
col_aff = find_column(filtered_df, ["Affiliation", "Autre affiliation (Veuillez préciser) : "])
col_particip = find_column(filtered_df, ["Avez-vous déjà participé à un événement Indaba X Togo ?"])
col_mode_formation = find_column(filtered_df, ["Comment voulez-vous participer aux formations ?"])
col_what_do = find_column(filtered_df, ["Que voulez-vous faire ?"])
col_skills = {
"Python": find_column(filtered_df, ["Quel est votre niveau en [Python]", "Quel est votre niveau en [Python]"]),
"Numpy": find_column(filtered_df, ["Quel est votre niveau en [Numpy]", "Quel est votre niveau en [Numpy]"]),
"Pandas": find_column(filtered_df, ["Quel est votre niveau en [Pandas]", "Quel est votre niveau en [Pandas]"]),
"Scikit Learn": find_column(filtered_df, ["Quel est votre niveau en [Scikit Learn]", "Quel est votre niveau en [Scikit Learn]"]),
"Pytorch": find_column(filtered_df, ["Quel est votre niveau en [Pytorch]", "Quel est votre niveau en [Pytorch]"]),
"Deep Learning": find_column(filtered_df, ["Quel est votre niveau en [Deep Learning]", "Quel est votre niveau en [Deep Learning]"]),
}
# KPIs for decision maker
kcols = st.columns(4)
with kcols[0]:
kpi_card("Inscriptions", f"{len(filtered_df):,}")
with kcols[1]:
if col_email:
uniq_people = filtered_df[col_email].astype(str).str.strip().str.lower().dropna().nunique()
kpi_card("Personnes uniques (email)", f"{uniq_people:,}")
else:
kpi_card("Personnes uniques", "-")
with kcols[2]:
if col_country and col_country in filtered_df.columns:
kpi_card("Pays (distincts)", f"{filtered_df[col_country].astype(str).nunique():,}")
else:
kpi_card("Pays (distincts)", "-")
with kcols[3]:
if col_role and col_role in filtered_df.columns:
kpi_card("Profils (distincts)", f"{filtered_df[col_role].astype(str).nunique():,}")
else:
kpi_card("Profils (distincts)", "-")
# Row 1 charts: Gender, Country
dm1 = st.columns(2)
if col_gender and col_gender in filtered_df.columns and not filtered_df.empty:
gcounts = filtered_df.groupby(col_gender).size().reset_index(name="count").sort_values("count", ascending=False)
fig_g = px.pie(gcounts, names=col_gender, values="count", template=get_plotly_template(theme_mode), hole=0.35)
with dm1[0]:
chart_card("Répartition par genre", fig_g)
if col_country and col_country in filtered_df.columns and not filtered_df.empty:
ccounts = filtered_df.groupby(col_country).size().reset_index(name="count").sort_values("count", ascending=False).head(15)
fig_c = px.bar(ccounts, x=col_country, y="count", template=get_plotly_template(theme_mode))
with dm1[1]:
chart_card("Top 15 pays de résidence", fig_c)
# Row 2: Participation history and roles
dm2 = st.columns(2)
if col_particip and col_particip in filtered_df.columns and not filtered_df.empty:
pcounts = filtered_df.groupby(col_particip).size().reset_index(name="count")
fig_p = px.bar(pcounts, x=col_particip, y="count", template=get_plotly_template(theme_mode))
with dm2[0]:
chart_card("A déjà participé ?", fig_p)
if col_role and col_role in filtered_df.columns and not filtered_df.empty:
rcounts = filtered_df.groupby(col_role).size().reset_index(name="count").sort_values("count", ascending=False).head(15)
fig_r = px.bar(rcounts, x=col_role, y="count", template=get_plotly_template(theme_mode))
with dm2[1]:
chart_card("Professions / Statuts (Top 15)", fig_r)
st.markdown("</div>", unsafe_allow_html=True)
# -----------------------------
# Page: Constructeur de graphiques
# -----------------------------
def page_constructeur_graphiques():
st.markdown("<h2>📈 Constructeur de graphiques</h2>", unsafe_allow_html=True)
if 'filtered_df' not in st.session_state or st.session_state['filtered_df'] is None:
st.warning("Veuillez d'abord importer et configurer des données dans l'onglet Tableau de bord.")
return
filtered_df = st.session_state['filtered_df']
type_map = st.session_state.get('logical_types', {})
theme_mode = "dark" if st.session_state.get('theme_mode') == "dark" else "light"
plotly_template = get_plotly_template(theme_mode)
# Universal Chart Builder
st.markdown("<div class=\"card\"><div class=\"card-title\">Constructeur de graphiques</div>", unsafe_allow_html=True)
chart_types = [
"Barres",
"Barres empilées",
"Lignes",
"Aires",
"Camembert",
"Histogramme",
"Nuage de points",
"Boîte (Box)",
"Violon",
]
cA, cB, cC = st.columns([1.2, 1, 1])
with cA:
chosen_chart = st.selectbox("Type de graphique", options=chart_types, key="ub_chart_type")
with cB:
agg_choice = st.selectbox("Agrégat", options=["count", "sum", "mean", "median", "min", "max"], index=0, key="ub_agg")
with cC:
topn_builder = st.number_input("Top N (optionnel)", min_value=0, value=0, step=1, help="0 pour désactiver")
all_cols = list(filtered_df.columns)
num_cols = [c for c in all_cols if pd.api.types.is_numeric_dtype(filtered_df[c])]
date_cols_any = [c for c in all_cols if pd.api.types.is_datetime64_any_dtype(try_parse_datetime(filtered_df[c]))]
cat_cols_any = [c for c in all_cols if c not in num_cols]
def aggregate_df(df_src: pd.DataFrame, x_col: Optional[str], y_col: Optional[str], color_col: Optional[str]) -> pd.DataFrame:
if agg_choice == "count":
if x_col is not None and y_col is None:
return df_src.groupby([x_col, color_col] if color_col else [x_col]).size().reset_index(name="value")
elif x_col is None and y_col is not None:
return df_src.groupby([y_col, color_col] if color_col else [y_col]).size().reset_index(name="value")
elif x_col is not None and y_col is not None:
return df_src.groupby([x_col, y_col]).size().reset_index(name="value")
else:
return pd.DataFrame({"value": [len(df_src)]})
else:
agg_func = agg_choice
measure = y_col if (y_col in num_cols) else (x_col if (x_col in num_cols) else (num_cols[0] if num_cols else None))
if measure is None:
return df_src.groupby([x_col, color_col] if color_col else [x_col]).size().reset_index(name="value") if x_col else pd.DataFrame({"value": [len(df_src)]})
group_keys = [k for k in [x_col, color_col] if k]
out = df_src.groupby(group_keys, dropna=False)[measure].agg(agg_func).reset_index(name="value")
return out
if chosen_chart in ("Barres", "Barres empilées"):
x = st.selectbox("Axe X (cat/date)", options=cat_cols_any, key="ub_bar_x")
color = st.selectbox("Couleur (optionnel)", options=[None] + cat_cols_any, key="ub_bar_color")
measure = st.selectbox("Mesure (numérique ou count)", options=["(count)"] + num_cols, key="ub_bar_measure")
data = aggregate_df(filtered_df, x, None if measure == "(count)" else measure, color)
if topn_builder and topn_builder > 0 and x in data.columns:
data = data.sort_values("value", ascending=False).groupby(x).head(1).head(int(topn_builder))
if chosen_chart == "Barres":
fig = px.bar(data, x=x, y="value", color=color, template=plotly_template, barmode="group")
else:
fig = px.bar(data, x=x, y="value", color=color, template=plotly_template, barmode="relative")
st.plotly_chart(fig, use_container_width=True, theme=None)
elif chosen_chart in ("Lignes", "Aires"):
x = st.selectbox("Axe X (date recommandé)", options=date_cols_any or cat_cols_any, key="ub_line_x")
color = st.selectbox("Couleur (optionnel)", options=[None] + cat_cols_any, key="ub_line_color")
measure = st.selectbox("Mesure (numérique ou count)", options=["(count)"] + num_cols, key="ub_line_measure")
data = aggregate_df(filtered_df, x, None if measure == "(count)" else measure, color)
if chosen_chart == "Lignes":
fig = px.line(data, x=x, y="value", color=color, template=plotly_template)
else:
fig = px.area(data, x=x, y="value", color=color, template=plotly_template)
st.plotly_chart(fig, use_container_width=True, theme=None)
elif chosen_chart == "Camembert":
names = st.selectbox("Noms (catégorie)", options=cat_cols_any, key="ub_pie_names")
measure = st.selectbox("Mesure (numérique ou count)", options=["(count)"] + num_cols, key="ub_pie_measure")
if measure == "(count)":
data = filtered_df.groupby(names).size().reset_index(name="value")
else:
data = filtered_df.groupby(names)[measure].sum().reset_index(name="value")
fig = px.pie(data, names=names, values="value", template=plotly_template, hole=0.35)
st.plotly_chart(fig, use_container_width=True, theme=None)
elif chosen_chart == "Histogramme":
x = st.selectbox("Colonne numérique", options=num_cols, key="ub_hist_x")
bins = st.slider("Nb de bacs (bins)", 5, 100, 30)
fig = px.histogram(filtered_df, x=x, nbins=bins, template=plotly_template)
st.plotly_chart(fig, use_container_width=True, theme=None)
elif chosen_chart == "Nuage de points":
x = st.selectbox("X (numérique)", options=num_cols, key="ub_scatter_x")
y = st.selectbox("Y (numérique)", options=[c for c in num_cols if c != x], key="ub_scatter_y")
color = st.selectbox("Couleur (optionnel)", options=[None] + cat_cols_any, key="ub_scatter_color")
fig = px.scatter(filtered_df, x=x, y=y, color=color, template=plotly_template)
st.plotly_chart(fig, use_container_width=True, theme=None)
elif chosen_chart == "Boîte (Box)":
y = st.selectbox("Y (numérique)", options=num_cols, key="ub_box_y")
x = st.selectbox("X (catégorie optionnel)", options=[None] + cat_cols_any, key="ub_box_x")
fig = px.box(filtered_df, x=x, y=y, template=plotly_template)
st.plotly_chart(fig, use_container_width=True, theme=None)
elif chosen_chart == "Violon":
y = st.selectbox("Y (numérique)", options=num_cols, key="ub_violin_y")
x = st.selectbox("X (catégorie optionnel)", options=[None] + cat_cols_any, key="ub_violin_x")
fig = px.violin(filtered_df, x=x, y=y, template=plotly_template, box=True, points="outliers")
st.plotly_chart(fig, use_container_width=True, theme=None)
st.markdown("</div>", unsafe_allow_html=True)
# -----------------------------
# Page: Envoi d'emails
# -----------------------------
def page_emails():
st.markdown("<h2>✉️ Envoi d'emails</h2>", unsafe_allow_html=True)
if 'filtered_df' not in st.session_state or st.session_state['filtered_df'] is None:
st.warning("Veuillez d'abord importer et configurer des données dans l'onglet Tableau de bord.")
return
filtered_df = st.session_state['filtered_df']
# Email Sender Section
st.markdown("<div class=\"card\"><div class=\"card-title\">✉️ Envoi d'emails (CSV ou données filtrées)</div>", unsafe_allow_html=True)
ecols1 = st.columns([1, 1])
with ecols1[0]:
st.caption("Source des destinataires")
use_current = st.radio(
"Choisir la source",
options=["Données filtrées actuelles", "Importer un CSV/XLSX"],
horizontal=False,
index=0,
key="email_source_choice",
)
with ecols1[1]:
st.caption("Fichier (si import)")
upload_mail = st.file_uploader("Importer un fichier", type=["csv", "xlsx"], key="email_upload_file")
recipients_df: Optional[pd.DataFrame] = None
if use_current == "Données filtrées actuelles":
recipients_df = filtered_df.copy()
else:
if upload_mail is not None:
try:
if upload_mail.name.lower().endswith(".csv"):
recipients_df = pd.read_csv(upload_mail)
else:
recipients_df = pd.read_excel(upload_mail)
recipients_df.columns = [str(c).strip() for c in recipients_df.columns]
except Exception as e:
st.error(f"Erreur de lecture du fichier: {e}")
if recipients_df is None or recipients_df.empty:
st.info("Importez un fichier ou utilisez les données filtrées pour continuer.")
st.markdown("</div>", unsafe_allow_html=True)
return
# Mapping email column
email_col_guess = find_column(recipients_df, ["email", "e-mail", "mail"]) or ("Email" if "Email" in recipients_df.columns else None)
email_col = st.selectbox(
"Colonne email",
options=list(recipients_df.columns),
index=(list(recipients_df.columns).index(email_col_guess) if email_col_guess in recipients_df.columns else 0),
help="Sélectionnez la colonne contenant les adresses email",
key="email_col_select",
)
# SMTP settings
st.markdown("<div class=\"card\" style=\"margin-top: 0.75rem;\"><div class=\"card-title\">Paramètres SMTP</div>", unsafe_allow_html=True)
s1, s2, s3, s4 = st.columns([1.2, 0.8, 1, 1])
with s1:
smtp_host = st.text_input("Hôte SMTP", value=os.environ.get("SMTP_HOST", "smtp.gmail.com"))
with s2:
smtp_port = st.number_input("Port", min_value=1, max_value=65535, value=int(os.environ.get("SMTP_PORT", 587)))
with s3:
use_tls = st.selectbox("Sécurité", options=["STARTTLS", "SSL"], index=0) == "STARTTLS"
with s4:
reply_to = st.text_input("Reply-To (optionnel)", value=os.environ.get("SMTP_REPLY_TO", ""))
s5, s6 = st.columns([1, 1])
with s5:
sender_email = st.text_input("Adresse expéditrice", value=os.environ.get("SMTP_SENDER", ""))
with s6:
sender_password = st.text_input("Mot de passe/clé appli", type="password", value=os.environ.get("SMTP_PASSWORD", ""))
st.markdown("</div>", unsafe_allow_html=True)
# Composition
st.markdown("<div class=\"card\" style=\"margin-top: 0.75rem;\"><div class=\"card-title\">Composer le message</div>", unsafe_allow_html=True)
placeholders = ", ".join([f"{{{c}}}" for c in recipients_df.columns])
subj = st.text_input("Objet", placeholder="Objet de l'email. Vous pouvez utiliser des variables comme {Nom}")
body = st.text_area(
"Corps (texte)",
height=180,
placeholder="Bonjour {Prenom} {Nom},\n\nVotre statut: {Statut}\n...",
help=f"Variables disponibles: {placeholders}",
)
st.caption("Astuce: utilisez {NomColonne} pour insérer des champs du CSV.")
# Preview first recipient
pv1, pv2 = st.columns([1, 1])
with pv1:
st.subheader("Aperçu des données (5)")
st.dataframe(recipients_df.head(5), use_container_width=True, hide_index=True)
with pv2:
st.subheader("Aperçu email (1er destinataire)")
try:
if not recipients_df.empty:
row0 = recipients_df.iloc[0].to_dict()
st.write("À:", recipients_df[email_col].iloc[0])
st.write("Objet:", safe_format_template(subj, row0))
st.code(safe_format_template(body, row0))
except Exception:
st.caption("Impossible de générer l'aperçu.")
st.markdown("</div>", unsafe_allow_html=True)
# Sending controls
st.markdown("<div class=\"card\" style=\"margin-top: 0.75rem;\"><div class=\"card-title\">Envoi</div>", unsafe_allow_html=True)
c_left, c_mid, c_right = st.columns([1, 1, 1])
with c_left:
limit_send = st.number_input("Limiter (0 = tout)", min_value=0, value=0, help="Pour tester, limiter le nombre d'emails envoyés")
with c_mid:
start_at = st.number_input("Début à l'index", min_value=0, value=0)
with c_right:
confirm = st.checkbox("Je confirme vouloir envoyer ces emails", value=False)
do_send = st.button("Envoyer", type="primary", use_container_width=True, disabled=not confirm)
if do_send:
if not sender_email or not smtp_host or not subj or not body:
st.error("Veuillez remplir l'hôte SMTP, l'adresse expéditrice, l'objet et le corps.")
else:
total = len(recipients_df)
indices = list(range(start_at, total))
if limit_send and limit_send > 0:
indices = indices[: int(limit_send)]
progress = st.progress(0)
sent_ok = 0
log_container = st.container()
for idx_i, i in enumerate(indices, start=1):
try:
row = recipients_df.iloc[i]
to_addr = str(row[email_col]).strip()
if not to_addr or "@" not in to_addr:
raise ValueError("Adresse email invalide")
row_dict = row.to_dict()
subject_i = safe_format_template(subj, row_dict)
body_i = safe_format_template(body, row_dict)
send_email_smtp(
smtp_host=smtp_host,
smtp_port=int(smtp_port),
sender_email=sender_email,
sender_password=sender_password,
use_tls=use_tls,
to_email=to_addr,
subject=subject_i,
body_text=body_i,
reply_to=(reply_to or None),
)
sent_ok += 1
log_container.success(f"Envoyé à {to_addr}")
except Exception as e:
log_container.error(f"Échec pour index {i}: {e}")
progress.progress(int(idx_i * 100 / max(1, len(indices))))
st.info(f"Terminé. Succès: {sent_ok}/{len(indices)}")
st.markdown("</div>", unsafe_allow_html=True)
# -----------------------------
# Main App
# -----------------------------
def main():
inject_base_css()
# Header
col_logo, col_title, col_right = st.columns([1, 3, 1])
with col_logo:
logo_path = os.path.join("assets", "logo.png")
if os.path.exists(logo_path):
st.image(logo_path, width=72)
with col_title:
st.markdown("<h1 style='text-align:center; margin-top: 0;'>Tableau de bord des inscriptions</h1>", unsafe_allow_html=True)
with col_right:
st.write("")
# Charger les contrôles de la barre latérale
# (ces contrôles sont partagés entre tous les onglets)
df, type_map, theme_mode, _, unique_keys = sidebar_controls()
# Stocker les types dans session_state pour les autres onglets
if df is not None:
st.session_state['logical_types'] = type_map
st.session_state['unique_keys'] = unique_keys
st.session_state['theme_mode'] = theme_mode
# Onglets de l'application
tab1, tab2, tab3, tab4 = st.tabs([
"📊 Tableau de bord",
"📋 Analyses avancées",
"📈 Constructeur graphiques",
"✉️ Envoi emails"
])
with tab1:
page_tableau_de_bord()
with tab2:
page_analyses()
with tab3:
page_constructeur_graphiques()
with tab4:
page_emails()
if __name__ == "__main__":
main() |