Spaces:
Running
Running
| import os | |
| import gradio as gr | |
| from .inference import run_model | |
| from .utils import load_ct_to_numpy | |
| from .utils import load_pred_volume_to_numpy | |
| from .utils import nifti_to_glb | |
| class WebUI: | |
| def __init__( | |
| self, | |
| model_name: str = None, | |
| cwd: str = "/home/user/app/", | |
| share: int = 1, | |
| ): | |
| # global states | |
| self.images = [] | |
| self.pred_images = [] | |
| # @TODO: This should be dynamically set based on chosen volume size | |
| self.nb_slider_items = 415 | |
| self.model_name = model_name | |
| self.cwd = cwd | |
| self.share = share | |
| self.class_name = "airways" # default | |
| self.class_names = { | |
| "airways": "CT_Airways", | |
| "lungs": "CT_Lungs", | |
| } | |
| self.result_names = { | |
| "airways": "Airways", | |
| "lungs": "Lungs", | |
| } | |
| # define widgets not to be rendered immediantly, but later on | |
| self.slider = gr.Slider( | |
| 1, | |
| self.nb_slider_items, | |
| value=1, | |
| step=1, | |
| label="Which 2D slice to show", | |
| ) | |
| self.volume_renderer = gr.Model3D( | |
| clear_color=[0.0, 0.0, 0.0, 0.0], | |
| label="3D Model", | |
| visible=True, | |
| elem_id="model-3d", | |
| ).style(height=512) | |
| def set_class_name(self, value): | |
| print("Changed task to:", value) | |
| self.class_name = value | |
| def combine_ct_and_seg(self, img, pred): | |
| return (img, [(pred, self.class_name)]) | |
| def upload_file(self, file): | |
| return file.name | |
| def process(self, mesh_file_name): | |
| path = mesh_file_name.name | |
| run_model( | |
| path, | |
| model_path=os.path.join(self.cwd, "resources/models/"), | |
| task=self.class_names[self.class_name], | |
| name=self.result_names[self.class_name], | |
| ) | |
| nifti_to_glb("prediction.nii.gz") | |
| self.images = load_ct_to_numpy(path) | |
| self.pred_images = load_pred_volume_to_numpy("./prediction.nii.gz") | |
| return "./prediction.obj" | |
| def get_img_pred_pair(self, k): | |
| k = int(k) - 1 | |
| out = [gr.AnnotatedImage.update(visible=False)] * self.nb_slider_items | |
| out[k] = gr.AnnotatedImage.update( | |
| self.combine_ct_and_seg(self.images[k], self.pred_images[k]), | |
| visible=True, | |
| ) | |
| return out | |
| def run(self): | |
| css = """ | |
| #model-3d { | |
| height: 512px; | |
| } | |
| #model-2d { | |
| height: 512px; | |
| margin: auto; | |
| } | |
| #upload { | |
| height: 120px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Row(): | |
| file_output = gr.File(file_count="single", elem_id="upload") | |
| file_output.upload(self.upload_file, file_output, file_output) | |
| model_selector = gr.Dropdown( | |
| list(self.class_names.keys()), | |
| label="Task", | |
| info="Which task to perform", | |
| multiselect=False, | |
| size="sm", | |
| ) | |
| model_selector.input( | |
| fn=lambda x: self.set_class_name(x), | |
| inputs=model_selector, | |
| outputs=None, | |
| ) | |
| run_btn = gr.Button("Run analysis").style( | |
| full_width=False, size="lg" | |
| ) | |
| run_btn.click( | |
| fn=lambda x: self.process(x), | |
| inputs=file_output, | |
| outputs=self.volume_renderer, | |
| ) | |
| with gr.Row(): | |
| gr.Examples( | |
| examples=[ | |
| os.path.join(self.cwd, "test_thorax_CT.nii.gz"), | |
| ], | |
| inputs=file_output, | |
| outputs=file_output, | |
| fn=self.upload_file, | |
| cache_examples=True, | |
| ) | |
| with gr.Row(): | |
| with gr.Box(): | |
| with gr.Column(): | |
| image_boxes = [] | |
| for i in range(self.nb_slider_items): | |
| visibility = True if i == 1 else False | |
| t = gr.AnnotatedImage( | |
| visible=visibility, elem_id="model-2d" | |
| ).style( | |
| color_map={self.class_name: "#ffae00"}, | |
| height=512, | |
| width=512, | |
| ) | |
| image_boxes.append(t) | |
| self.slider.input( | |
| self.get_img_pred_pair, self.slider, image_boxes | |
| ) | |
| self.slider.render() | |
| with gr.Box(): | |
| self.volume_renderer.render() | |
| # sharing app publicly -> share=True: | |
| # https://gradio.app/sharing-your-app/ | |
| # inference times > 60 seconds -> need queue(): | |
| # https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062 | |
| demo.queue().launch( | |
| server_name="0.0.0.0", server_port=7860, share=self.share | |
| ) | |