Spaces:
Sleeping
Sleeping
| import modal | |
| import random | |
| from datetime import datetime | |
| import io | |
| import os | |
| from config.config import models, prompts | |
| volume = modal.Volume.from_name("flux-model-vol") | |
| # Define the Modal image | |
| image = (modal.Image.debian_slim(python_version="3.9") | |
| .pip_install( | |
| "ninja", | |
| "packaging", | |
| "wheel", | |
| "diffusers", # For Stable Diffusion | |
| "transformers", # For Hugging Face models | |
| "torch>=2.0.1", # PyTorch with a minimum version | |
| "accelerate", # For distributed training/inference | |
| "gradio", # For the Gradio interface | |
| "safetensors", # For safe model loading | |
| "pillow", # For image processing | |
| "datasets", # For datasets (if needed) | |
| ) | |
| ) | |
| with image.imports(): | |
| import diffusers | |
| import torch | |
| from fastapi import Response | |
| app = modal.App("ctb-ai-img-gen-modal", image=image) | |
| def generate_image(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1): | |
| import torch | |
| from diffusers import StableDiffusionPipeline | |
| # Debug function to check installed packages | |
| def check_dependencies(): | |
| import importlib | |
| # Load the pipeline | |
| self.model_dir = model_dir | |
| self.device = "cuda" | |
| self.torch_dtype = torch.float16 | |
| #@modal.method() | |
| def run( | |
| self, | |
| prompt_alias: str, | |
| team_color: str, | |
| model_alias: str, | |
| custom_prompt: str, | |
| height: int = 360, | |
| width: int = 640, | |
| num_inference_steps: int = 20, | |
| guidance_scale: float = 2.0, | |
| seed: int = -1, | |
| ) -> tuple[str, str]: | |
| import torch | |
| from diffusers import StableDiffusionPipeline | |
| # Find the selected prompt and model | |
| try: | |
| prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"] | |
| model_name = next(m for m in models if m["alias"] == model_alias)["name"] | |
| except StopIteration: | |
| return None, "ERROR: Invalid prompt or model selected." | |
| # Determine the enemy color | |
| enemy_color = "blue" if team_color.lower() == "red" else "red" | |
| # Format the prompt | |
| prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color) | |
| # Append custom prompt if provided | |
| if custom_prompt and len(custom_prompt.strip()) > 0: | |
| prompt += " " + custom_prompt.strip() | |
| # Set seed | |
| seed = seed if seed != -1 else random.randint(0, 2**32 - 1) | |
| print("seeding RNG with", seed) | |
| torch.manual_seed(seed) | |
| # Load the pipeline | |
| model_path = os.path.join(self.model_dir, model_name) | |
| pipe = StableDiffusionPipeline.from_pretrained( | |
| model_path, | |
| torch_dtype=self.torch_dtype, | |
| safety_checker=None, # Disable safety checker | |
| feature_extractor=None, # Disable feature extractor | |
| ).to(self.device) | |
| # Generate the image | |
| try: | |
| image = pipe( | |
| prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=torch.Generator(self.device).manual_seed(seed) | |
| ).images[0] | |
| # Save the image with a timestamped filename | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| output_filename = f"{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png" | |
| image.save(output_filename) | |
| return output_filename, "Image generated successfully!" | |
| except Exception as e: | |
| return None, f"ERROR: Failed to generate image. Details: {e}" | |
| # Function to be called from the Gradio interface | |
| def generate(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1): | |
| try: | |
| # Generate the image | |
| image_path, message = generate_image(prompt_alias, team_color, model_alias, custom_prompt, height, width, num_inference_steps, guidance_scale, seed) | |
| return image_path, message | |
| except Exception as e: | |
| return None, f"An error occurred: {e}" | |