Spaces:
Sleeping
Sleeping
| #img_gen_modal.py | |
| import modal | |
| import sys | |
| import os | |
| import random | |
| from datetime import datetime | |
| import random | |
| import io | |
| from config.config import models, prompts # Indirect import | |
| import gradio as gr | |
| volume = modal.Volume.from_name("flux-model-vol") # Reference your volume | |
| # Define the Modal image | |
| image = ( | |
| modal.Image.from_registry( | |
| "nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.11" | |
| ) | |
| .pip_install( | |
| "ninja", | |
| "packaging", | |
| "wheel", | |
| "diffusers", # For Stable Diffusion | |
| "transformers", # For Hugging Face models | |
| "torch>=2.0.1", # PyTorch with a minimum version | |
| "accelerate", # For distributed training/inference | |
| "gradio", # For the Gradio interface | |
| "safetensors", # For safe model loading | |
| "pillow", # For image processing | |
| "datasets", # For datasets (if needed) | |
| ) | |
| ) | |
| app = modal.App("ctb-ai-img-gen-mondal", image=image) | |
| f = modal.Function.lookup("ctb-ai-img-gen-mondal", "generate_image") | |
| def generate(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1): | |
| import gradio as gr | |
| try: | |
| # Generate the image | |
| image_path, message = f.remote(prompt_alias, team_color, model_alias, custom_prompt, height, width, num_inference_steps, guidance_scale, seed) | |
| return image_path, message | |
| except Exception as e: | |
| return None, f"An error occurred: {e}" | |
| def generate_image(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, | |
| num_inference_steps=20, guidance_scale=2.0, seed=-1): | |
| import torch | |
| from diffusers import StableDiffusionPipeline | |
| # Check if the directory exists | |
| import os | |
| model_dir = "/volume/FLUX.1-dev" | |
| if not os.path.exists(model_dir): | |
| raise FileNotFoundError(f"Model directory not found at {model_dir}") | |
| # Your image generation code here | |
| print(f"Model directory found at {model_dir}! Proceeding with image generation...") | |
| # Example: List contents of the directory | |
| print("Contents of FLUX.1-dev:") | |
| print(os.listdir(model_dir)) | |
| # Find the selected prompt and model | |
| try: | |
| prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"] | |
| model_name = next(m for m in models if m["alias"] == model_alias)["name"] | |
| except StopIteration: | |
| return None, "ERROR: Invalid prompt or model selected." | |
| # Debug: Check if the model directory exists | |
| print(f"Debug: Checking if model directory exists: {model_name}") | |
| if not os.path.exists(model_name): | |
| return None, f"ERROR: Model directory not found at {model_name}" | |
| # Initialize the pipeline using the local model | |
| print("Debug: Loading model...") | |
| # Determine the enemy color | |
| enemy_color = "blue" if team_color.lower() == "red" else "red" | |
| # Print the original prompt and dynamic values for debugging | |
| print("Original Prompt:") | |
| print(prompt) | |
| print(f"Enemy Color: {enemy_color}") | |
| print(f"Team Color: {team_color.lower()}") | |
| # Format the prompt | |
| prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color) | |
| # Print the formatted prompt for debugging | |
| print("\nFormatted Prompt:") | |
| print(prompt) | |
| # Append custom prompt if provided | |
| if custom_prompt and len(custom_prompt.strip()) > 0: | |
| prompt += " " + custom_prompt.strip() | |
| # Randomize seed if needed | |
| if seed == -1: | |
| seed = random.randint(0, 1000000) | |
| # Initialize the pipeline | |
| pipe = StableDiffusionPipeline.from_pretrained( | |
| model_name, | |
| torch_dtype=torch.float16, | |
| use_safetensors=True, | |
| #variant="fp16" | |
| ) | |
| pipe.to("cuda") | |
| # Connect the button to the function | |
| generate_button.click( | |
| generate, | |
| inputs=[prompt_dropdown, team_dropdown, model_dropdown, custom_prompt_input], | |
| outputs=[output_image, status_text] | |
| ) | |
| # Generate the image | |
| try: | |
| image = pipe( | |
| prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=torch.Generator("cuda").manual_seed(seed) | |
| ).images[0] | |
| # Convert PIL image to bytes | |
| img_byte_arr = io.BytesIO() | |
| image.save(img_byte_arr, format='PNG') | |
| img_byte_arr = img_byte_arr.getvalue() | |
| except Exception as e: | |
| return None, f"ERROR: Failed to generate image. Details: {e}" | |
| # Save the image with a timestamped filename | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| output_filename = f"{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png" | |
| try: | |
| image.save(output_filename) | |
| except Exception as e: | |
| return img_byte_arr, "Image generated successfully!" | |
| except Exception as e: | |
| return None, f"ERROR: Failed to generate image. Details: {e}" | |
| return output_filename, "Image generated successfully!" | |