Spaces:
Sleeping
Sleeping
| # img_gen.py | |
| #img_gen_modal.py | |
| # img_gen.py | |
| # img_gen_modal.py | |
| import modal | |
| import random | |
| from datetime import datetime | |
| import random | |
| import io | |
| from config.config import prompts, models # Indirect import | |
| import os | |
| import torch | |
| from huggingface_hub import login | |
| from transformers import AutoTokenizer | |
| CACHE_DIR = "/model_cache" | |
| # Define the Modal image | |
| image = ( | |
| modal.Image.from_registry( | |
| "nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.9" | |
| ) | |
| .apt_install( | |
| "git", | |
| ) | |
| .pip_install( | |
| "diffusers", | |
| "transformers", | |
| "torch", | |
| "accelerate", | |
| "gradio>=4.44.1", | |
| "safetensors", | |
| "pillow", | |
| "sentencepiece", | |
| "hf_transfer", | |
| "huggingface_hub[hf_transfer]", | |
| "aria2", # aria2 for ultra-fast parallel downloads | |
| f"git+https://github.com/huggingface/transformers.git" | |
| ) | |
| .env( | |
| { | |
| "HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HOME": "HF_HOME", "HF_HUB_CACHE": CACHE_DIR | |
| } | |
| ) | |
| ) | |
| # Create a Modal app | |
| app = modal.App("img-gen-modal", image=image) | |
| with image.imports(): | |
| import diffusers | |
| import os | |
| import gradio | |
| import torch | |
| import sentencepiece | |
| flux_model_vol = modal.Volume.from_name("flux-model-vol", create_if_missing=True) # Reference your volume | |
| def generate_image(prompt_alias, team_color, model_alias, custom_prompt, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1): | |
| # Find the selected prompt and model | |
| try: | |
| prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"] | |
| model_name = next(m for m in models if m["alias"] == model_alias)["name"] | |
| except StopIteration: | |
| return None, "ERROR: Invalid prompt or model selected." | |
| # Determine the enemy color | |
| enemy_color = "blue" if team_color.lower() == "red" else "red" | |
| # Print the original prompt and dynamic values for debugging | |
| print("Original Prompt:") | |
| print(prompt) | |
| print(f"Enemy Color: {enemy_color}") | |
| print(f"Team Color: {team_color.lower()}") | |
| prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color) | |
| # Print the formatted prompt for debugging | |
| print("\nFormatted Prompt:") | |
| print(prompt) | |
| # Append the custom prompt (if provided) | |
| if custom_prompt and len(custom_prompt.strip()) > 0: | |
| prompt += " " + custom_prompt.strip() | |
| # Randomize the seed if needed | |
| if seed == -1: | |
| seed = random.randint(0, 1000000) | |
| # DOWNLOADING FROM HERE KEEPS THE /MODELS/ DIRECTORY | |
| # WITH A SCRIPT IT GOES AWAY | |
| # def download_flux(): | |
| # from huggingface_hub import snapshot_download | |
| # import transformers | |
| # repo_id = "black-forest-labs/FLUX.1-schnell" | |
| # local_dir = "/data/models/FLUX.1-schnell" | |
| # # **FASTEST METHOD:** Use max_workers for parallel download | |
| # snapshot_download( | |
| # repo_id, | |
| # local_dir=local_dir, | |
| # revision="main", | |
| # #ignore_patterns=["*.pt", "*.bin"], # Skip large model weights | |
| # max_workers=8 # Higher concurrency for parallel chunk downloads | |
| # ) | |
| # transformers.utils.move_cache() | |
| # print(f"FLUX model downloaded to {local_dir}") | |
| # download_flux() | |
| try: | |
| from diffusers import FluxPipeline | |
| print("Initializing HF TOKEN") | |
| hf_token = os.environ["HF_TOKEN"] | |
| print(hf_token) | |
| print("HF TOKEN:") | |
| login(token=hf_token) | |
| print("model_name:") | |
| print(model_name) | |
| # First check if model exists in the volume | |
| local_path = "models/" + model_name | |
| print(f"Loading model from local path: {local_path}") | |
| # Debug: Check if the directory exists and list its contents | |
| for item in os.listdir(local_path): | |
| print(f" - {item}") | |
| print("Initializing PIPE") | |
| # Initialize the pipeline | |
| #cache_dir = "/cache_" | |
| pipe = FluxPipeline.from_pretrained("data/" + model_name, torch_dtype=torch.bfloat16,local_files_only=True, | |
| #cache_dir=cache_dir | |
| ) | |
| pipe = pipe.to("cuda") | |
| except Exception as e: | |
| print(f"Detailed error: {str(e)}") | |
| return None, f"ERROR: Failed to initialize PIPE. Details: {e}" | |
| try: | |
| print("Sending img gen to pipe") | |
| image = pipe( | |
| prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| # seed=seed | |
| ).images[0] | |
| image.save("image.png") | |
| except Exception as e: | |
| return None, f"ERROR: Failed to generate image. Details: {e}" | |
| # # Save the image with a timestamped filename | |
| # timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| # output_filename = f"{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png" | |
| # try: | |
| # # The pipeline typically returns images in a specific format | |
| # # Usually it's image.images[0] for the first generated image | |
| # image_output = image.images[0] # Get the actual PIL Image from the output | |
| # image_output.save(output_filename) # Save using PIL's save method | |
| # except Exception as e: | |
| # return None, f"ERROR: Failed to save image. Details: {e}" | |
| # print(f"Image output type: {type(image)}") | |
| # print(f"Image output attributes: {dir(image)}") |