Spaces:
Sleeping
Sleeping
| import modal | |
| from src.gradio_interface import demo | |
| # Print debug information | |
| print("Importing Modal and setting up the app...") | |
| # Define the Modal app | |
| app = modal.App(name="example-app") | |
| # Define a custom image with Python and some dependencies | |
| print("Building custom image...") | |
| image = ( | |
| modal.Image.debian_slim(python_version="3.11") # Base image | |
| .pip_install( | |
| "numpy", | |
| "pandas", | |
| "diffusers", | |
| "transformers", | |
| "torch", | |
| "accelerate", | |
| "gradio", | |
| "safetensors", | |
| "pillow", | |
| ) # Install Python packages | |
| .run_commands("echo 'Image build complete!'") # Run a shell command | |
| ) | |
| # Define a function to run inside the container | |
| def main(): | |
| # Debug: Print a message when the function starts | |
| print("Starting main function inside the container...") | |
| # Import libraries and print their versions | |
| import numpy as np | |
| import pandas as pd | |
| import torch | |
| import diffusers | |
| import transformers | |
| import gradio as gr | |
| from PIL import Image as PILImage | |
| print("Hello from Modal!") | |
| print("NumPy version:", np.__version__) | |
| print("Pandas version:", pd.__version__) | |
| print("PyTorch version:", torch.__version__) | |
| print("Diffusers version:", diffusers.__version__) # Corrected: Use the library's __version__ | |
| print("Transformers version:", transformers.__version__) # Corrected: Use the library's __version__ | |
| print("Gradio version:", gr.__version__) | |
| print("Pillow version:", PILImage.__version__) | |
| # Create a simple DataFrame | |
| df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) | |
| print("DataFrame:\n", df) | |
| # Test PyTorch | |
| tensor = torch.tensor([1, 2, 3]) | |
| print("PyTorch tensor:", tensor) | |
| # Test Diffusers (load a simple pipeline) | |
| print("Loading Diffusers pipeline...") | |
| pipe = diffusers.DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") | |
| print("Diffusers pipeline loaded successfully!") | |
| # Test Gradio (create a simple interface) | |
| def greet(name): | |
| return f"Hello {name}!" | |
| print("Creating Gradio interface...") | |
| iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
| print("Gradio interface created successfully!") | |
| # Debug: Print a message when the function ends | |
| print("Main function execution complete!") | |
| # Launch gradio-interface | |
| demo.launch() | |
| # Run the function locally (for testing) | |
| if __name__ == "__main__": | |
| print("Running the function locally...") | |
| main.local() |