andythebest's picture
Upload folder using huggingface_hub
c77f6df verified
raw
history blame
12.4 kB
import gradio as gr
from transformers import pipeline
import os
import cv2
from ultralytics import YOLO
import shutil # Import shutil for copying files
import zipfile # Import zipfile for creating zip archives
def multi_model_detection(image_paths_list: list, model_paths_list: list, output_dir: str = 'detection_results', conf_threshold: float = 0.25):
"""
使用多個 YOLOv8 模型對多張圖片進行物件辨識,
並將結果繪製在圖片上,同時保存辨識資訊到文字檔案。
Args:
image_paths_list (list): 包含所有待辨識圖片路徑的列表。
model_paths_list (list): 包含所有模型 (.pt 檔案) 路徑的列表。
output_dir (str): 儲存結果圖片和文字檔案的目錄。
如果不存在,函式會自動創建。
conf_threshold (float): 置信度閾值,只有高於此值的偵測結果會被標示。
Returns:
list: A list of paths to the annotated images.
list: A list of paths to the text files with detection information.
"""
# 確保輸出目錄存在
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print(f"已創建輸出目錄: {output_dir}")
# 載入所有模型
loaded_models = []
print("\n--- 載入模型 ---")
# If no models are uploaded, use the default yolov8n.pt
if not model_paths_list:
default_model_path = 'yolov8n.pt'
try:
model = YOLO(default_model_path)
loaded_models.append((default_model_path, model))
print(f"成功載入預設模型: {default_model_path}")
except Exception as e:
print(f"錯誤: 無法載入預設模型 '{default_model_path}' - {e}")
return [], []
else:
for model_path in model_paths_list:
try:
model = YOLO(model_path)
loaded_models.append((model_path, model)) # 儲存模型路徑和模型物件
print(f"成功載入模型: {model_path}")
except Exception as e:
print(f"錯誤: 無法載入模型 '{model_path}' - {e}")
continue # 如果模型載入失敗,跳過它
if not loaded_models:
print("沒有模型成功載入,請檢查模型路徑或預設模型。")
return [], []
annotated_image_paths = []
txt_output_paths = []
# 處理每張圖片
print("\n--- 開始圖片辨識 ---")
for image_path in image_paths_list:
if not os.path.exists(image_path):
print(f"警告: 圖片 '{image_path}' 不存在,跳過。")
continue
print(f"\n處理圖片: {os.path.basename(image_path)}")
original_image = cv2.imread(image_path)
if original_image is None:
print(f"錯誤: 無法讀取圖片 '{image_path}',跳過。")
continue
# 複製圖片用於繪製,避免修改原始圖片
# 使用 NumPy 複製,而不是直接賦值
annotated_image = original_image.copy()
# 準備寫入文字檔的內容
txt_output_content = []
txt_output_content.append(f"檔案: {os.path.basename(image_path)}\n")
# 對每張圖片使用所有模型進行辨識
all_detections_for_image = [] # 儲存所有模型在當前圖片上的偵測結果
for model_path_str, model_obj in loaded_models:
model_name = os.path.basename(model_path_str) # 獲取模型檔案名
print(f" 使用模型 '{model_name}' 進行辨識...")
# 執行推論, device="cpu" ensures it runs on CPU if GPU is not available or preferred
results = model_obj(image_path, verbose=False, device="cpu")[0]
# 將辨識結果添加到 txt 輸出內容和繪圖列表
txt_output_content.append(f"\n--- 模型: {model_name} ---")
if results.boxes: # 檢查是否有偵測到物件
for box in results.boxes:
# 取得邊界框座標和置信度
conf = float(box.conf[0])
if conf >= conf_threshold: # 檢查置信度是否達到閾值
x1, y1, x2, y2 = map(int, box.xyxy[0])
cls_id = int(box.cls[0])
cls_name = model_obj.names[cls_id] # 取得類別名稱
detection_info = {
'model_name': model_name,
'class_name': cls_name,
'confidence': conf,
'bbox': (x1, y1, x2, y2)
}
all_detections_for_image.append(detection_info)
# 加入到文字檔內容
txt_output_content.append(f" - {cls_name} (Conf: {conf:.2f}) [x1:{x1}, y1:{y1}, x2:{x2}, y2:{y2}]")
else:
txt_output_content.append(" 沒有偵測到任何物件。")
# 繪製所有模型在當前圖片上的偵測結果
# 我們會根據模型來源給予不同的顏色或樣式,讓結果更容易區分
# 定義一個顏色循環列表,方便給不同模型分配不同顏色
colors = [
(255, 0, 0), # 紅色 (例如給模型 A)
(0, 255, 0), # 綠色 (例如給模型 B)
(0, 0, 255), # 藍色
(255, 255, 0), # 黃色
(255, 0, 255), # 紫色
(0, 255, 255), # 青色
(128, 0, 0), # 深紅
(0, 128, 0) # 深綠
]
color_map = {} # 用來映射模型名稱到顏色
for idx, (model_path_str, _) in enumerate(loaded_models):
model_name = os.path.basename(model_path_str)
color_map[model_name] = colors[idx % len(colors)] # 確保顏色循環使用
for det in all_detections_for_image:
x1, y1, x2, y2 = det['bbox']
conf = det['confidence']
cls_name = det['class_name']
model_name = det['model_name']
color = color_map.get(model_name, (200, 200, 200)) # 預設灰色
# 繪製邊界框
cv2.rectangle(annotated_image, (x1, y1), (x2, y2), color, 2)
# 繪製標籤 (類別名稱 + 置信度 + 模型名稱縮寫)
# 為了避免標籤過長,模型名稱只取前幾個字母
model_abbr = "".join([s[0] for s in model_name.split('.')[:-1]]) # 例如 'a.pt' -> 'a'
label = f'{cls_name} {conf:.2f} ({model_abbr})'
cv2.putText(annotated_image, label, (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# 保存繪製後的圖片
image_base_name = os.path.basename(image_path)
image_name_without_ext = os.path.splitext(image_base_name)[0]
output_image_path = os.path.join(output_dir, f"{image_name_without_ext}_detected.jpg")
cv2.imwrite(output_image_path, annotated_image)
annotated_image_paths.append(output_image_path)
print(f" 結果圖片保存至: {output_image_path}")
# 保存辨識資訊到文字檔案
output_txt_path = os.path.join(output_dir, f"{image_name_without_ext}.txt")
with open(output_txt_path, 'w', encoding='utf-8') as f:
f.write("\n".join(txt_output_content))
txt_output_paths.append(output_txt_path)
print(f" 辨識資訊保存至: {output_txt_path}")
print("\n--- 所有圖片處理完成 ---")
return annotated_image_paths, txt_output_paths
def create_zip_archive(files, zip_filename):
"""Creates a zip archive from a list of files."""
with zipfile.ZipFile(zip_filename, 'w', zipfile.ZIP_DEFLATED) as zipf:
for file in files:
if os.path.exists(file):
zipf.write(file, os.path.basename(file))
else:
print(f"警告: 檔案 '{file}' 不存在,無法加入壓縮檔。")
return zip_filename
# --- Gradio Interface ---
def gradio_multi_model_detection(image_files, model_files, conf_threshold, output_subdir):
"""
Gradio 的主要處理函式。
接收上傳的檔案和參數,呼叫後端辨識函式,並返回結果。
Args:
image_files (list): Gradio File 元件回傳的圖片檔案列表 (暫存路徑)。
model_files (list): Gradio File 元件回傳的模型檔案列表 (暫存路徑)。
conf_threshold (float): 置信度閾值。
output_subdir (str): 用於儲存本次執行結果的子目錄名稱。
Returns:
tuple: 更新 Gradio 介面所需的多個輸出。
"""
if not image_files:
return None, "請上傳圖片檔案。", None, None
# Get the temporary file paths from Gradio File objects
image_paths = [file.name for file in image_files]
# Use uploaded model paths or an empty list if none are uploaded
model_paths = [file.name for file in model_files] if model_files else []
# Define the output directory for this run within the main results directory
base_output_dir = 'gradio_detection_results'
run_output_dir = os.path.join(base_output_dir, output_subdir)
# Perform detection
annotated_images, detection_texts = multi_model_detection(
image_paths_list=image_paths,
model_paths_list=model_paths,
output_dir=run_output_dir,
conf_threshold=conf_threshold
)
if not annotated_images:
return None, "辨識失敗,請檢查輸入或模型。", None, None
# Combine detection texts for display in one textbox
combined_detection_text = "--- 辨識結果 ---\n\n"
for txt_path in detection_texts:
with open(txt_path, 'r', encoding='utf-8') as f:
combined_detection_text += f.read() + "\n\n"
# Create a zip file containing both annotated images and text files
all_result_files = annotated_images + detection_texts
zip_filename = os.path.join(run_output_dir, f"{output_subdir}_results.zip")
created_zip_path = create_zip_archive(all_result_files, zip_filename)
# Return annotated images and combined text for Gradio output
# Gradio Gallery expects a list of image paths
return annotated_images, combined_detection_text, f"結果儲存於: {os.path.abspath(run_output_dir)}", created_zip_path
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# 支援多模型YOLO物件辨識(demo)")
gr.Markdown("上傳您的圖片和模型,並設定置信度閾值進行物件辨識。若未上傳模型,將使用預設的 yolov8n.pt 進行辨識。")
with gr.Row():
with gr.Column():
image_input = gr.File(label="上傳圖片", file_count="multiple", file_types=["image"])
model_input = gr.File(label="上傳模型 (.pt)", file_count="multiple", file_types=[".pt"])
conf_slider = gr.Slider(minimum=0, maximum=1, value=0.25, step=0.05, label="置信度閾值")
output_subdir_input = gr.Textbox(label="結果子目錄名稱", value="run_1", placeholder="請輸入儲存結果的子目錄名稱")
run_button = gr.Button("開始辨識")
with gr.Column():
# show_label=False hides the class name label below each image
# allow_preview=True enables double-clicking to zoom
# allow_download=True adds a download button for each image in the gallery
output_gallery = gr.Gallery(label="辨識結果圖片", height=400, allow_preview=True, object_fit="contain")
output_text = gr.Textbox(label="辨識資訊", lines=10)
output_status = gr.Textbox(label="狀態/儲存路徑")
download_button = gr.File(label="下載所有結果 (.zip)", file_count="single")
# Link the button click to the function
run_button.click(
fn=gradio_multi_model_detection,
inputs=[image_input, model_input, conf_slider, output_subdir_input],
outputs=[output_gallery, output_text, output_status, download_button]
)
# Launch the interface
demo.launch(debug=True)