css designs to table and more
Browse files
app.css
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
.infoPoint h1 {
|
| 3 |
+
font-size: 30px;
|
| 4 |
+
text-decoration: bold;
|
| 5 |
+
|
| 6 |
+
}
|
| 7 |
+
|
| 8 |
+
a {
|
| 9 |
+
text-decoration: underline;
|
| 10 |
+
color: #1f3b54 ;
|
| 11 |
+
}
|
| 12 |
+
|
| 13 |
+
table {
|
| 14 |
+
|
| 15 |
+
margin: 25px 0;
|
| 16 |
+
font-size: 0.9em;
|
| 17 |
+
font-family: sans-serif;
|
| 18 |
+
min-width: 400px;
|
| 19 |
+
box-shadow: 0 0 20px rgba(0, 0, 0, 0.15);
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
table th,
|
| 23 |
+
table td {
|
| 24 |
+
padding: 12px 15px;
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
tr {
|
| 28 |
+
text-align: left;
|
| 29 |
+
}
|
| 30 |
+
thead tr {
|
| 31 |
+
text-align: left;
|
| 32 |
+
}
|
app.py
CHANGED
|
@@ -11,12 +11,12 @@ from huggingface_hub.repocard import metadata_load
|
|
| 11 |
# Make model clickable link
|
| 12 |
def make_clickable_model(model_name):
|
| 13 |
link = "https://huggingface.co/" + model_name
|
| 14 |
-
return f'<a
|
| 15 |
|
| 16 |
# Make user clickable link
|
| 17 |
def make_clickable_user(user_id):
|
| 18 |
link = "https://huggingface.co/" + user_id
|
| 19 |
-
return f'<a
|
| 20 |
|
| 21 |
def get_model_ids(rl_env):
|
| 22 |
api = HfApi()
|
|
@@ -83,12 +83,9 @@ def get_data_per_env(rl_env):
|
|
| 83 |
dataframe["User"] = dataframe["User"].apply(make_clickable_user)
|
| 84 |
dataframe["Model"] = dataframe["Model"].apply(make_clickable_model)
|
| 85 |
dataframe = dataframe.sort_values(by=['Results'], ascending=False)
|
| 86 |
-
table_html = dataframe.to_html(escape=False, index=False)
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
table_html = table_html.replace("<thead>", '<thead align="left">') # left-align the headers
|
| 90 |
-
|
| 91 |
-
table_html = "<div style='text-align: left ; width:100%'>"+table_html+"</div>"
|
| 92 |
return table_html,dataframe,dataframe.empty
|
| 93 |
else:
|
| 94 |
html = """<div style="color: green">
|
|
@@ -107,71 +104,59 @@ RL_DETAILS ={'CarRacing-v0':{'title':" The Car Racing ποΈ Leaderboard π",
|
|
| 107 |
}
|
| 108 |
|
| 109 |
|
| 110 |
-
def
|
| 111 |
-
#import pdb;pdb.set_trace()
|
| 112 |
-
global RL_DETAILS
|
| 113 |
-
RL_DETAILS[rl_env]['data'] = get_data_per_env(rl_env)
|
| 114 |
-
|
| 115 |
-
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
|
| 116 |
-
|
| 117 |
if not is_empty:
|
| 118 |
markdown = """
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
| 131 |
|
| 132 |
else:
|
| 133 |
markdown = """
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
|
|
|
|
|
|
| 137 |
return markdown,data_html
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
|
| 142 |
-
block = gr.Blocks()
|
| 143 |
with block:
|
| 144 |
|
| 145 |
with gr.Tabs():
|
| 146 |
for rl_env in RL_ENVS:
|
| 147 |
with gr.TabItem(rl_env):
|
| 148 |
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
|
| 149 |
-
|
| 150 |
-
if not is_empty:
|
| 151 |
-
markdown = """
|
| 152 |
-
# {name_leaderboard}
|
| 153 |
-
|
| 154 |
-
This is a leaderboard of **{len_dataframe}** agents playing {env_name} π©βπ.
|
| 155 |
-
|
| 156 |
-
We use lower bound result to sort the models: mean_reward - std_reward.
|
| 157 |
-
|
| 158 |
-
You can click on the model's name to be redirected to its model card which includes documentation.
|
| 159 |
-
|
| 160 |
-
You want to try your model? Read this [Unit 1](https://github.com/huggingface/deep-rl-class/blob/Unit1/unit1/README.md) of Deep Reinforcement Learning Class.
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
""".format(len_dataframe = len(data_dataframe),env_name = rl_env,name_leaderboard = RL_DETAILS[rl_env]['title'])
|
| 164 |
-
|
| 165 |
-
else:
|
| 166 |
-
markdown = """
|
| 167 |
-
# {name_leaderboard}
|
| 168 |
-
""".format(name_leaderboard = RL_DETAILS[rl_env]['title'])
|
| 169 |
-
|
| 170 |
reload = gr.Button('Reload Leaderboard')
|
| 171 |
-
|
| 172 |
-
output_markdown = gr.
|
| 173 |
output_html = gr.HTML(data_html)
|
| 174 |
-
reload.click(reload_leaderboard,inputs=[
|
| 175 |
|
| 176 |
|
| 177 |
block.launch()
|
|
|
|
| 11 |
# Make model clickable link
|
| 12 |
def make_clickable_model(model_name):
|
| 13 |
link = "https://huggingface.co/" + model_name
|
| 14 |
+
return f'<a target="_blank" href="{link}">{model_name}</a>'
|
| 15 |
|
| 16 |
# Make user clickable link
|
| 17 |
def make_clickable_user(user_id):
|
| 18 |
link = "https://huggingface.co/" + user_id
|
| 19 |
+
return f'<a target="_blank" href="{link}">{user_id}</a>'
|
| 20 |
|
| 21 |
def get_model_ids(rl_env):
|
| 22 |
api = HfApi()
|
|
|
|
| 83 |
dataframe["User"] = dataframe["User"].apply(make_clickable_user)
|
| 84 |
dataframe["Model"] = dataframe["Model"].apply(make_clickable_model)
|
| 85 |
dataframe = dataframe.sort_values(by=['Results'], ascending=False)
|
| 86 |
+
table_html = dataframe.to_html(escape=False, index=False,justify = 'left')
|
| 87 |
+
|
| 88 |
+
#table_html = table_html.replace("<thead>", '<thead align="left">') # left-align the headers
|
|
|
|
|
|
|
|
|
|
| 89 |
return table_html,dataframe,dataframe.empty
|
| 90 |
else:
|
| 91 |
html = """<div style="color: green">
|
|
|
|
| 104 |
}
|
| 105 |
|
| 106 |
|
| 107 |
+
def get_info_display(len_dataframe,env_name,name_leaderboard,is_empty):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
if not is_empty:
|
| 109 |
markdown = """
|
| 110 |
+
<div class='infoPoint'>
|
| 111 |
+
<h1> {name_leaderboard} </h1>
|
| 112 |
+
<br>
|
| 113 |
+
<p> This is a leaderboard of <b>{len_dataframe}</b> agents playing {env_name} π©βπ. </p>
|
| 114 |
+
<br>
|
| 115 |
+
<p> We use lower bound result to sort the models: mean_reward - std_reward. </p>
|
| 116 |
+
<br>
|
| 117 |
+
<p> You can click on the model's name to be redirected to its model card which includes documentation. </p>
|
| 118 |
+
<br>
|
| 119 |
+
<p> You want to try your model? Read this <a href="https://github.com/huggingface/deep-rl-class/blob/Unit1/unit1/README.md" target="_blank">Unit 1</a> of Deep Reinforcement Learning Class.
|
| 120 |
+
</p>
|
| 121 |
+
</div>
|
| 122 |
+
""".format(len_dataframe = len_dataframe,env_name = env_name,name_leaderboard = name_leaderboard)
|
| 123 |
|
| 124 |
else:
|
| 125 |
markdown = """
|
| 126 |
+
<div class='infoPoint'>
|
| 127 |
+
<h1> {name_leaderboard} </h1>
|
| 128 |
+
<br>
|
| 129 |
+
</div>
|
| 130 |
+
""".format(name_leaderboard = name_leaderboard)
|
| 131 |
+
return markdown
|
| 132 |
+
|
| 133 |
+
def reload_leaderboard(rl_env):
|
| 134 |
+
global RL_DETAILS
|
| 135 |
+
RL_DETAILS[rl_env]['data'] = get_data_per_env(rl_env)
|
| 136 |
+
|
| 137 |
+
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
|
| 138 |
+
data_html = data_html.replace('thead align="left"', '<thead align="left" style="color:red">') # left-align the headers
|
| 139 |
|
| 140 |
+
markdown = get_info_display(len(data_dataframe),rl_env,RL_DETAILS[rl_env]['title'],is_empty)
|
| 141 |
+
|
| 142 |
return markdown,data_html
|
| 143 |
|
| 144 |
+
with open('app.css','r') as f:
|
| 145 |
+
BLOCK_CSS = f.read()
|
| 146 |
|
| 147 |
+
block = gr.Blocks(css=BLOCK_CSS)
|
| 148 |
with block:
|
| 149 |
|
| 150 |
with gr.Tabs():
|
| 151 |
for rl_env in RL_ENVS:
|
| 152 |
with gr.TabItem(rl_env):
|
| 153 |
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
|
| 154 |
+
markdown = get_info_display(len(data_dataframe),rl_env,RL_DETAILS[rl_env]['title'],is_empty)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
reload = gr.Button('Reload Leaderboard')
|
| 156 |
+
env_state =gr.Variable(default_value=rl_env)
|
| 157 |
+
output_markdown = gr.HTML(markdown)
|
| 158 |
output_html = gr.HTML(data_html)
|
| 159 |
+
reload.click(reload_leaderboard,inputs=[env_state],outputs=[output_markdown,output_html])
|
| 160 |
|
| 161 |
|
| 162 |
block.launch()
|