Spaces:
Build error
Build error
Upload folder using huggingface_hub
Browse files- README.md +2 -1
- __pycache__/utils.cpython-310.pyc +0 -0
- app.py +70 -15
- utils.py +9 -0
README.md
CHANGED
|
@@ -8,8 +8,9 @@ sdk_version: 4.19.2
|
|
| 8 |
# ToDo: Token Downsampling for Efficient Generation of High-Resolution Images
|
| 9 |
---
|
| 10 |
|
| 11 |
-
|
| 12 |
|
|
|
|
| 13 |
```
|
| 14 |
@misc{smith2024todo,
|
| 15 |
title={ToDo: Token Downsampling for Efficient Generation of High-Resolution Images},
|
|
|
|
| 8 |
# ToDo: Token Downsampling for Efficient Generation of High-Resolution Images
|
| 9 |
---
|
| 10 |
|
| 11 |
+
We provide a [HuggingFace Spaces demo](https://huggingface.co/spaces/aningineer/ToDo) for our recently proposed method, ["ToDo: Token Downsampling for Efficient Generation of High-Resolution Images"](https://arxiv.org/abs/2402.13573), and compare it against a popular token merging method called ToMe.
|
| 12 |
|
| 13 |
+
If you consider our research to be helpful, please consider citing us:
|
| 14 |
```
|
| 15 |
@misc{smith2024todo,
|
| 16 |
title={ToDo: Token Downsampling for Efficient Generation of High-Resolution Images},
|
__pycache__/utils.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/utils.cpython-310.pyc and b/__pycache__/utils.cpython-310.pyc differ
|
|
|
app.py
CHANGED
|
@@ -3,10 +3,11 @@ import spaces
|
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
| 5 |
import diffusers
|
| 6 |
-
from utils import patch_attention_proc
|
| 7 |
import math
|
| 8 |
import numpy as np
|
| 9 |
from PIL import Image
|
|
|
|
| 10 |
|
| 11 |
# Globals
|
| 12 |
css = """
|
|
@@ -21,8 +22,12 @@ pipe = diffusers.StableDiffusionPipeline.from_pretrained("Lykon/DreamShaper").to
|
|
| 21 |
pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 22 |
pipe.safety_checker = None
|
| 23 |
|
|
|
|
|
|
|
| 24 |
@spaces.GPU
|
| 25 |
-
def
|
|
|
|
|
|
|
| 26 |
|
| 27 |
downsample_factor = 2
|
| 28 |
ratio = 0.38
|
|
@@ -42,8 +47,8 @@ def generate(prompt, seed, steps, height_width, negative_prompt, guidance_scale,
|
|
| 42 |
elif height_width == 2048:
|
| 43 |
downsample_factor = 4
|
| 44 |
ratio = 0.9375
|
| 45 |
-
downsample_factor_level_2 =
|
| 46 |
-
ratio_level_2 = 0.
|
| 47 |
|
| 48 |
token_merge_args = {"ratio": ratio,
|
| 49 |
"merge_tokens": merge_tokens,
|
|
@@ -56,17 +61,60 @@ def generate(prompt, seed, steps, height_width, negative_prompt, guidance_scale,
|
|
| 56 |
"ratio_level_2": ratio_level_2
|
| 57 |
}
|
| 58 |
|
| 59 |
-
l_r = torch.rand(1).item()
|
| 60 |
torch.manual_seed(seed)
|
| 61 |
start_time_base = time.time()
|
|
|
|
| 62 |
base_img = pipe(prompt,
|
| 63 |
num_inference_steps=steps, height=height_width, width=height_width,
|
| 64 |
negative_prompt=negative_prompt,
|
| 65 |
guidance_scale=guidance_scale).images[0]
|
| 66 |
end_time_base = time.time()
|
| 67 |
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
torch.manual_seed(seed)
|
| 71 |
start_time_merge = time.time()
|
| 72 |
merged_img = pipe(prompt,
|
|
@@ -75,9 +123,11 @@ def generate(prompt, seed, steps, height_width, negative_prompt, guidance_scale,
|
|
| 75 |
guidance_scale=guidance_scale).images[0]
|
| 76 |
end_time_merge = time.time()
|
| 77 |
|
| 78 |
-
result = f"
|
| 79 |
|
| 80 |
-
|
|
|
|
|
|
|
| 81 |
|
| 82 |
|
| 83 |
|
|
@@ -95,13 +145,18 @@ with gr.Blocks(css=css) as demo:
|
|
| 95 |
steps = gr.Number(label="steps", value=20, precision=0)
|
| 96 |
seed = gr.Number(label="seed", value=1, precision=0)
|
| 97 |
|
| 98 |
-
result = gr.Textbox(label="Result")
|
| 99 |
with gr.Row():
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
demo.launch(share=True)
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
| 5 |
import diffusers
|
| 6 |
+
from utils import patch_attention_proc, remove_patch
|
| 7 |
import math
|
| 8 |
import numpy as np
|
| 9 |
from PIL import Image
|
| 10 |
+
from threading import Semaphore
|
| 11 |
|
| 12 |
# Globals
|
| 13 |
css = """
|
|
|
|
| 22 |
pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 23 |
pipe.safety_checker = None
|
| 24 |
|
| 25 |
+
semaphore = Semaphore() # for preventing collisions of two simultaneous button presses
|
| 26 |
+
|
| 27 |
@spaces.GPU
|
| 28 |
+
def generate_baseline(prompt, seed, steps, height_width, negative_prompt, guidance_scale, method):
|
| 29 |
+
|
| 30 |
+
semaphore.acquire()
|
| 31 |
|
| 32 |
downsample_factor = 2
|
| 33 |
ratio = 0.38
|
|
|
|
| 47 |
elif height_width == 2048:
|
| 48 |
downsample_factor = 4
|
| 49 |
ratio = 0.9375
|
| 50 |
+
downsample_factor_level_2 = 1
|
| 51 |
+
ratio_level_2 = 0.0
|
| 52 |
|
| 53 |
token_merge_args = {"ratio": ratio,
|
| 54 |
"merge_tokens": merge_tokens,
|
|
|
|
| 61 |
"ratio_level_2": ratio_level_2
|
| 62 |
}
|
| 63 |
|
|
|
|
| 64 |
torch.manual_seed(seed)
|
| 65 |
start_time_base = time.time()
|
| 66 |
+
remove_patch(pipe)
|
| 67 |
base_img = pipe(prompt,
|
| 68 |
num_inference_steps=steps, height=height_width, width=height_width,
|
| 69 |
negative_prompt=negative_prompt,
|
| 70 |
guidance_scale=guidance_scale).images[0]
|
| 71 |
end_time_base = time.time()
|
| 72 |
|
| 73 |
+
result = f"Baseline image: {end_time_base-start_time_base:.2f} sec"
|
| 74 |
+
|
| 75 |
+
semaphore.release()
|
| 76 |
+
|
| 77 |
+
return base_img, result
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
@spaces.GPU
|
| 81 |
+
def generate_merged(prompt, seed, steps, height_width, negative_prompt, guidance_scale, method):
|
| 82 |
+
|
| 83 |
+
semaphore.acquire()
|
| 84 |
+
|
| 85 |
+
downsample_factor = 2
|
| 86 |
+
ratio = 0.38
|
| 87 |
+
merge_method = "downsample" if method == "todo" else "similarity"
|
| 88 |
+
merge_tokens = "keys/values" if method == "todo" else "all"
|
| 89 |
+
|
| 90 |
+
if height_width == 1024:
|
| 91 |
+
downsample_factor = 2
|
| 92 |
+
ratio = 0.75
|
| 93 |
+
downsample_factor_level_2 = 1
|
| 94 |
+
ratio_level_2 = 0.0
|
| 95 |
+
elif height_width == 1536:
|
| 96 |
+
downsample_factor = 3
|
| 97 |
+
ratio = 0.89
|
| 98 |
+
downsample_factor_level_2 = 1
|
| 99 |
+
ratio_level_2 = 0.0
|
| 100 |
+
elif height_width == 2048:
|
| 101 |
+
downsample_factor = 4
|
| 102 |
+
ratio = 0.9375
|
| 103 |
+
downsample_factor_level_2 = 1
|
| 104 |
+
ratio_level_2 = 0.0
|
| 105 |
|
| 106 |
+
token_merge_args = {"ratio": ratio,
|
| 107 |
+
"merge_tokens": merge_tokens,
|
| 108 |
+
"merge_method": merge_method,
|
| 109 |
+
"downsample_method": "nearest",
|
| 110 |
+
"downsample_factor": downsample_factor,
|
| 111 |
+
"timestep_threshold_switch": 0.0,
|
| 112 |
+
"timestep_threshold_stop": 0.0,
|
| 113 |
+
"downsample_factor_level_2": downsample_factor_level_2,
|
| 114 |
+
"ratio_level_2": ratio_level_2
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
patch_attention_proc(pipe.unet, token_merge_args=token_merge_args)
|
| 118 |
torch.manual_seed(seed)
|
| 119 |
start_time_merge = time.time()
|
| 120 |
merged_img = pipe(prompt,
|
|
|
|
| 123 |
guidance_scale=guidance_scale).images[0]
|
| 124 |
end_time_merge = time.time()
|
| 125 |
|
| 126 |
+
result = f"{'ToDo' if method == 'todo' else 'ToMe'} image: {end_time_merge-start_time_merge:.2f} sec"
|
| 127 |
|
| 128 |
+
semaphore.release()
|
| 129 |
+
|
| 130 |
+
return merged_img, result
|
| 131 |
|
| 132 |
|
| 133 |
|
|
|
|
| 145 |
steps = gr.Number(label="steps", value=20, precision=0)
|
| 146 |
seed = gr.Number(label="seed", value=1, precision=0)
|
| 147 |
|
|
|
|
| 148 |
with gr.Row():
|
| 149 |
+
with gr.Column():
|
| 150 |
+
base_result = gr.Textbox(label="Baseline Runtime")
|
| 151 |
+
base_image = gr.Image(label=f"baseline_image", type="pil", interactive=False)
|
| 152 |
+
gen = gr.Button("Generate Baseline")
|
| 153 |
+
gen.click(generate_baseline, inputs=[prompt, seed, steps, height_width, negative_prompt,
|
| 154 |
+
guidance_scale, method], outputs=[base_image, base_result])
|
| 155 |
+
with gr.Column():
|
| 156 |
+
output_result = gr.Textbox(label="Runtime")
|
| 157 |
+
output_image = gr.Image(label=f"image", type="pil", interactive=False)
|
| 158 |
+
gen = gr.Button("Generate")
|
| 159 |
+
gen.click(generate_merged, inputs=[prompt, seed, steps, height_width, negative_prompt,
|
| 160 |
+
guidance_scale, method], outputs=[output_image, output_result])
|
| 161 |
|
| 162 |
demo.launch(share=True)
|
utils.py
CHANGED
|
@@ -25,6 +25,15 @@ def hook_tome_model(model: torch.nn.Module):
|
|
| 25 |
|
| 26 |
model._tome_info["hooks"].append(model.register_forward_pre_hook(hook))
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
def patch_attention_proc(unet, token_merge_args={}):
|
| 30 |
unet._tome_info = {
|
|
|
|
| 25 |
|
| 26 |
model._tome_info["hooks"].append(model.register_forward_pre_hook(hook))
|
| 27 |
|
| 28 |
+
def remove_patch(pipe: torch.nn.Module):
|
| 29 |
+
""" Removes a patch from a ToMe Diffusion module if it was already patched. """
|
| 30 |
+
|
| 31 |
+
if hasattr(pipe.unet, "_tome_info"):
|
| 32 |
+
del pipe.unet._tome_info
|
| 33 |
+
|
| 34 |
+
for n,m in pipe.unet.named_modules():
|
| 35 |
+
if hasattr(m, "processor"):
|
| 36 |
+
m.processor = AttnProcessor2_0()
|
| 37 |
|
| 38 |
def patch_attention_proc(unet, token_merge_args={}):
|
| 39 |
unet._tome_info = {
|