anonymous8
commited on
Commit
·
ecdc8b8
1
Parent(s):
4943752
update
Browse files- app.py +354 -134
- checkpoints.zip +2 -2
- text_defense/202.IMDB10K/imdb10k.test.dat +0 -0
- text_defense/202.IMDB10K/imdb10k.train.dat +0 -0
- text_defense/202.IMDB10K/imdb10k.valid.dat +0 -0
app.py
CHANGED
|
@@ -10,14 +10,23 @@ from findfile import find_files
|
|
| 10 |
|
| 11 |
from anonymous_demo import TADCheckpointManager
|
| 12 |
from textattack import Attacker
|
| 13 |
-
from textattack.attack_recipes import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
from textattack.attack_results import SuccessfulAttackResult
|
| 15 |
from textattack.datasets import Dataset
|
| 16 |
from textattack.models.wrappers import HuggingFaceModelWrapper
|
| 17 |
|
| 18 |
-
z = zipfile.ZipFile(
|
| 19 |
z.extractall(os.getcwd())
|
| 20 |
|
|
|
|
| 21 |
class ModelWrapper(HuggingFaceModelWrapper):
|
| 22 |
def __init__(self, model):
|
| 23 |
self.model = model # pipeline = pipeline
|
|
@@ -26,12 +35,11 @@ class ModelWrapper(HuggingFaceModelWrapper):
|
|
| 26 |
outputs = []
|
| 27 |
for text_input in text_inputs:
|
| 28 |
raw_outputs = self.model.infer(text_input, print_result=False, **kwargs)
|
| 29 |
-
outputs.append(raw_outputs[
|
| 30 |
return outputs
|
| 31 |
|
| 32 |
|
| 33 |
class SentAttacker:
|
| 34 |
-
|
| 35 |
def __init__(self, model, recipe_class=BAEGarg2019):
|
| 36 |
model = model
|
| 37 |
model_wrapper = ModelWrapper(model)
|
|
@@ -41,7 +49,7 @@ class SentAttacker:
|
|
| 41 |
|
| 42 |
# recipe.transformation.language = "en"
|
| 43 |
|
| 44 |
-
_dataset = [(
|
| 45 |
_dataset = Dataset(_dataset)
|
| 46 |
|
| 47 |
self.attacker = Attacker(recipe, _dataset)
|
|
@@ -58,63 +66,132 @@ def diff_texts(text1, text2):
|
|
| 58 |
def get_ensembled_tad_results(results):
|
| 59 |
target_dict = {}
|
| 60 |
for r in results:
|
| 61 |
-
target_dict[r[
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
return dict(zip(target_dict.values(), target_dict.keys()))[
|
|
|
|
|
|
|
| 64 |
|
| 65 |
|
| 66 |
-
nltk.download(
|
| 67 |
|
| 68 |
sent_attackers = {}
|
| 69 |
tad_classifiers = {}
|
| 70 |
|
| 71 |
attack_recipes = {
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
}
|
| 80 |
|
| 81 |
-
for attacker in [
|
| 82 |
-
'pwws',
|
| 83 |
-
'bae',
|
| 84 |
-
'textfooler'
|
| 85 |
-
]:
|
| 86 |
for dataset in [
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
| 90 |
]:
|
| 91 |
-
if
|
| 92 |
-
tad_classifiers[
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
sent_attackers[
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
def get_a_sst2_example():
|
| 99 |
-
filter_key_words = ['.py', '.md', 'readme', 'log', 'result', 'zip', '.state_dict', '.model', '.png', 'acc_', 'f1_', '.origin', '.adv', '.csv']
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
data = []
|
| 111 |
label_set = set()
|
| 112 |
for data_file in dataset_file[dat_type]:
|
| 113 |
-
|
| 114 |
-
with open(data_file, mode='r', encoding='utf8') as fin:
|
| 115 |
lines = fin.readlines()
|
| 116 |
for line in lines:
|
| 117 |
-
text, label = line.split(
|
| 118 |
text = text.strip()
|
| 119 |
label = int(label.strip())
|
| 120 |
data.append((text, label))
|
|
@@ -122,25 +199,43 @@ def get_a_sst2_example():
|
|
| 122 |
return data[random.randint(0, len(data))]
|
| 123 |
|
| 124 |
|
| 125 |
-
def
|
| 126 |
-
filter_key_words = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
-
dataset_file = {
|
| 129 |
-
dataset =
|
| 130 |
-
search_path =
|
| 131 |
-
task =
|
| 132 |
-
dataset_file[
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
data = []
|
| 137 |
label_set = set()
|
| 138 |
for data_file in dataset_file[dat_type]:
|
| 139 |
-
|
| 140 |
-
with open(data_file, mode='r', encoding='utf8') as fin:
|
| 141 |
lines = fin.readlines()
|
| 142 |
for line in lines:
|
| 143 |
-
text, label = line.split(
|
| 144 |
text = text.strip()
|
| 145 |
label = int(label.strip())
|
| 146 |
data.append((text, label))
|
|
@@ -148,26 +243,43 @@ def get_a_agnews_example():
|
|
| 148 |
return data[random.randint(0, len(data))]
|
| 149 |
|
| 150 |
|
| 151 |
-
def
|
| 152 |
-
filter_key_words = [
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
data = []
|
| 164 |
label_set = set()
|
| 165 |
for data_file in dataset_file[dat_type]:
|
| 166 |
-
|
| 167 |
-
with open(data_file, mode='r', encoding='utf8') as fin:
|
| 168 |
lines = fin.readlines()
|
| 169 |
for line in lines:
|
| 170 |
-
text, label = line.split(
|
| 171 |
text = text.strip()
|
| 172 |
label = int(label.strip())
|
| 173 |
data.append((text, label))
|
|
@@ -175,97 +287,205 @@ def get_a_amazon_example():
|
|
| 175 |
return data[random.randint(0, len(data))]
|
| 176 |
|
| 177 |
|
|
|
|
|
|
|
|
|
|
| 178 |
def generate_adversarial_example(dataset, attacker, text=None, label=None):
|
| 179 |
-
if not text:
|
| 180 |
-
if
|
| 181 |
-
text, label =
|
| 182 |
-
elif
|
| 183 |
-
text, label =
|
| 184 |
-
elif
|
| 185 |
-
text, label =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
result = None
|
| 188 |
-
attack_result = sent_attackers[
|
|
|
|
|
|
|
| 189 |
if isinstance(attack_result, SuccessfulAttackResult):
|
| 190 |
-
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
# with defense
|
| 193 |
-
result = tad_classifiers[
|
| 194 |
-
attack_result.perturbed_result.attacked_text.text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
print_result=True,
|
| 196 |
-
defense=
|
| 197 |
)
|
| 198 |
|
| 199 |
if result:
|
| 200 |
classification_df = {}
|
| 201 |
-
classification_df[
|
| 202 |
-
classification_df[
|
| 203 |
-
classification_df[
|
| 204 |
-
classification_df[
|
| 205 |
|
| 206 |
advdetection_df = {}
|
| 207 |
-
if result[
|
| 208 |
-
advdetection_df[
|
| 209 |
-
|
| 210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
# advdetection_df['ref_is_attack'] = result['ref_is_adv_label']
|
| 212 |
# advdetection_df['is_correct'] = result['ref_is_adv_check']
|
| 213 |
|
| 214 |
else:
|
| 215 |
return generate_adversarial_example(dataset, attacker)
|
| 216 |
|
| 217 |
-
return (
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
|
| 228 |
demo = gr.Blocks()
|
| 229 |
-
|
| 230 |
with demo:
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
with gr.Column():
|
| 252 |
-
gr.
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
# Bind functions to buttons
|
| 260 |
-
button_gen.click(
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
|
| 271 |
demo.launch()
|
|
|
|
| 10 |
|
| 11 |
from anonymous_demo import TADCheckpointManager
|
| 12 |
from textattack import Attacker
|
| 13 |
+
from textattack.attack_recipes import (
|
| 14 |
+
BAEGarg2019,
|
| 15 |
+
PWWSRen2019,
|
| 16 |
+
TextFoolerJin2019,
|
| 17 |
+
PSOZang2020,
|
| 18 |
+
IGAWang2019,
|
| 19 |
+
GeneticAlgorithmAlzantot2018,
|
| 20 |
+
DeepWordBugGao2018,
|
| 21 |
+
)
|
| 22 |
from textattack.attack_results import SuccessfulAttackResult
|
| 23 |
from textattack.datasets import Dataset
|
| 24 |
from textattack.models.wrappers import HuggingFaceModelWrapper
|
| 25 |
|
| 26 |
+
z = zipfile.ZipFile("checkpoints.zip", "r")
|
| 27 |
z.extractall(os.getcwd())
|
| 28 |
|
| 29 |
+
|
| 30 |
class ModelWrapper(HuggingFaceModelWrapper):
|
| 31 |
def __init__(self, model):
|
| 32 |
self.model = model # pipeline = pipeline
|
|
|
|
| 35 |
outputs = []
|
| 36 |
for text_input in text_inputs:
|
| 37 |
raw_outputs = self.model.infer(text_input, print_result=False, **kwargs)
|
| 38 |
+
outputs.append(raw_outputs["probs"])
|
| 39 |
return outputs
|
| 40 |
|
| 41 |
|
| 42 |
class SentAttacker:
|
|
|
|
| 43 |
def __init__(self, model, recipe_class=BAEGarg2019):
|
| 44 |
model = model
|
| 45 |
model_wrapper = ModelWrapper(model)
|
|
|
|
| 49 |
|
| 50 |
# recipe.transformation.language = "en"
|
| 51 |
|
| 52 |
+
_dataset = [("", 0)]
|
| 53 |
_dataset = Dataset(_dataset)
|
| 54 |
|
| 55 |
self.attacker = Attacker(recipe, _dataset)
|
|
|
|
| 66 |
def get_ensembled_tad_results(results):
|
| 67 |
target_dict = {}
|
| 68 |
for r in results:
|
| 69 |
+
target_dict[r["label"]] = (
|
| 70 |
+
target_dict.get(r["label"]) + 1 if r["label"] in target_dict else 1
|
| 71 |
+
)
|
| 72 |
|
| 73 |
+
return dict(zip(target_dict.values(), target_dict.keys()))[
|
| 74 |
+
max(target_dict.values())
|
| 75 |
+
]
|
| 76 |
|
| 77 |
|
| 78 |
+
nltk.download("omw-1.4")
|
| 79 |
|
| 80 |
sent_attackers = {}
|
| 81 |
tad_classifiers = {}
|
| 82 |
|
| 83 |
attack_recipes = {
|
| 84 |
+
"bae": BAEGarg2019,
|
| 85 |
+
"pwws": PWWSRen2019,
|
| 86 |
+
"textfooler": TextFoolerJin2019,
|
| 87 |
+
"pso": PSOZang2020,
|
| 88 |
+
"iga": IGAWang2019,
|
| 89 |
+
"GA": GeneticAlgorithmAlzantot2018,
|
| 90 |
+
"wordbugger": DeepWordBugGao2018,
|
| 91 |
}
|
| 92 |
|
| 93 |
+
for attacker in ["pwws", "bae", "textfooler"]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
for dataset in [
|
| 95 |
+
"agnews10k",
|
| 96 |
+
"amazon",
|
| 97 |
+
"sst2",
|
| 98 |
+
# 'imdb'
|
| 99 |
]:
|
| 100 |
+
if "tad-{}".format(dataset) not in tad_classifiers:
|
| 101 |
+
tad_classifiers[
|
| 102 |
+
"tad-{}".format(dataset)
|
| 103 |
+
] = TADCheckpointManager.get_tad_text_classifier(
|
| 104 |
+
"tad-{}".format(dataset).upper()
|
| 105 |
+
)
|
| 106 |
|
| 107 |
+
sent_attackers["tad-{}{}".format(dataset, attacker)] = SentAttacker(
|
| 108 |
+
tad_classifiers["tad-{}".format(dataset)], attack_recipes[attacker]
|
| 109 |
+
)
|
| 110 |
+
tad_classifiers["tad-{}".format(dataset)].sent_attacker = sent_attackers[
|
| 111 |
+
"tad-{}pwws".format(dataset)
|
| 112 |
+
]
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def get_sst2_example():
|
| 116 |
+
filter_key_words = [
|
| 117 |
+
".py",
|
| 118 |
+
".md",
|
| 119 |
+
"readme",
|
| 120 |
+
"log",
|
| 121 |
+
"result",
|
| 122 |
+
"zip",
|
| 123 |
+
".state_dict",
|
| 124 |
+
".model",
|
| 125 |
+
".png",
|
| 126 |
+
"acc_",
|
| 127 |
+
"f1_",
|
| 128 |
+
".origin",
|
| 129 |
+
".adv",
|
| 130 |
+
".csv",
|
| 131 |
+
]
|
| 132 |
|
| 133 |
+
dataset_file = {"train": [], "test": [], "valid": []}
|
| 134 |
+
dataset = "sst2"
|
| 135 |
+
search_path = "./"
|
| 136 |
+
task = "text_defense"
|
| 137 |
+
dataset_file["test"] += find_files(
|
| 138 |
+
search_path,
|
| 139 |
+
[dataset, "test", task],
|
| 140 |
+
exclude_key=[".adv", ".org", ".defense", ".inference", "train."]
|
| 141 |
+
+ filter_key_words,
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
for dat_type in ["test"]:
|
| 145 |
+
data = []
|
| 146 |
+
label_set = set()
|
| 147 |
+
for data_file in dataset_file[dat_type]:
|
| 148 |
+
with open(data_file, mode="r", encoding="utf8") as fin:
|
| 149 |
+
lines = fin.readlines()
|
| 150 |
+
for line in lines:
|
| 151 |
+
text, label = line.split("$LABEL$")
|
| 152 |
+
text = text.strip()
|
| 153 |
+
label = int(label.strip())
|
| 154 |
+
data.append((text, label))
|
| 155 |
+
label_set.add(label)
|
| 156 |
+
return data[random.randint(0, len(data))]
|
| 157 |
|
|
|
|
|
|
|
| 158 |
|
| 159 |
+
def get_agnews_example():
|
| 160 |
+
filter_key_words = [
|
| 161 |
+
".py",
|
| 162 |
+
".md",
|
| 163 |
+
"readme",
|
| 164 |
+
"log",
|
| 165 |
+
"result",
|
| 166 |
+
"zip",
|
| 167 |
+
".state_dict",
|
| 168 |
+
".model",
|
| 169 |
+
".png",
|
| 170 |
+
"acc_",
|
| 171 |
+
"f1_",
|
| 172 |
+
".origin",
|
| 173 |
+
".adv",
|
| 174 |
+
".csv",
|
| 175 |
+
]
|
| 176 |
|
| 177 |
+
dataset_file = {"train": [], "test": [], "valid": []}
|
| 178 |
+
dataset = "agnews"
|
| 179 |
+
search_path = "./"
|
| 180 |
+
task = "text_defense"
|
| 181 |
+
dataset_file["test"] += find_files(
|
| 182 |
+
search_path,
|
| 183 |
+
[dataset, "test", task],
|
| 184 |
+
exclude_key=[".adv", ".org", ".defense", ".inference", "train."]
|
| 185 |
+
+ filter_key_words,
|
| 186 |
+
)
|
| 187 |
+
for dat_type in ["test"]:
|
| 188 |
data = []
|
| 189 |
label_set = set()
|
| 190 |
for data_file in dataset_file[dat_type]:
|
| 191 |
+
with open(data_file, mode="r", encoding="utf8") as fin:
|
|
|
|
| 192 |
lines = fin.readlines()
|
| 193 |
for line in lines:
|
| 194 |
+
text, label = line.split("$LABEL$")
|
| 195 |
text = text.strip()
|
| 196 |
label = int(label.strip())
|
| 197 |
data.append((text, label))
|
|
|
|
| 199 |
return data[random.randint(0, len(data))]
|
| 200 |
|
| 201 |
|
| 202 |
+
def get_amazon_example():
|
| 203 |
+
filter_key_words = [
|
| 204 |
+
".py",
|
| 205 |
+
".md",
|
| 206 |
+
"readme",
|
| 207 |
+
"log",
|
| 208 |
+
"result",
|
| 209 |
+
"zip",
|
| 210 |
+
".state_dict",
|
| 211 |
+
".model",
|
| 212 |
+
".png",
|
| 213 |
+
"acc_",
|
| 214 |
+
"f1_",
|
| 215 |
+
".origin",
|
| 216 |
+
".adv",
|
| 217 |
+
".csv",
|
| 218 |
+
]
|
| 219 |
|
| 220 |
+
dataset_file = {"train": [], "test": [], "valid": []}
|
| 221 |
+
dataset = "amazon"
|
| 222 |
+
search_path = "./"
|
| 223 |
+
task = "text_defense"
|
| 224 |
+
dataset_file["test"] += find_files(
|
| 225 |
+
search_path,
|
| 226 |
+
[dataset, "test", task],
|
| 227 |
+
exclude_key=[".adv", ".org", ".defense", ".inference", "train."]
|
| 228 |
+
+ filter_key_words,
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
for dat_type in ["test"]:
|
| 232 |
data = []
|
| 233 |
label_set = set()
|
| 234 |
for data_file in dataset_file[dat_type]:
|
| 235 |
+
with open(data_file, mode="r", encoding="utf8") as fin:
|
|
|
|
| 236 |
lines = fin.readlines()
|
| 237 |
for line in lines:
|
| 238 |
+
text, label = line.split("$LABEL$")
|
| 239 |
text = text.strip()
|
| 240 |
label = int(label.strip())
|
| 241 |
data.append((text, label))
|
|
|
|
| 243 |
return data[random.randint(0, len(data))]
|
| 244 |
|
| 245 |
|
| 246 |
+
def get_imdb_example():
|
| 247 |
+
filter_key_words = [
|
| 248 |
+
".py",
|
| 249 |
+
".md",
|
| 250 |
+
"readme",
|
| 251 |
+
"log",
|
| 252 |
+
"result",
|
| 253 |
+
"zip",
|
| 254 |
+
".state_dict",
|
| 255 |
+
".model",
|
| 256 |
+
".png",
|
| 257 |
+
"acc_",
|
| 258 |
+
"f1_",
|
| 259 |
+
".origin",
|
| 260 |
+
".adv",
|
| 261 |
+
".csv",
|
| 262 |
+
]
|
| 263 |
|
| 264 |
+
dataset_file = {"train": [], "test": [], "valid": []}
|
| 265 |
+
dataset = "imdb"
|
| 266 |
+
search_path = "./"
|
| 267 |
+
task = "text_defense"
|
| 268 |
+
dataset_file["test"] += find_files(
|
| 269 |
+
search_path,
|
| 270 |
+
[dataset, "test", task],
|
| 271 |
+
exclude_key=[".adv", ".org", ".defense", ".inference", "train."]
|
| 272 |
+
+ filter_key_words,
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
for dat_type in ["test"]:
|
| 276 |
data = []
|
| 277 |
label_set = set()
|
| 278 |
for data_file in dataset_file[dat_type]:
|
| 279 |
+
with open(data_file, mode="r", encoding="utf8") as fin:
|
|
|
|
| 280 |
lines = fin.readlines()
|
| 281 |
for line in lines:
|
| 282 |
+
text, label = line.split("$LABEL$")
|
| 283 |
text = text.strip()
|
| 284 |
label = int(label.strip())
|
| 285 |
data.append((text, label))
|
|
|
|
| 287 |
return data[random.randint(0, len(data))]
|
| 288 |
|
| 289 |
|
| 290 |
+
cache = set()
|
| 291 |
+
|
| 292 |
+
|
| 293 |
def generate_adversarial_example(dataset, attacker, text=None, label=None):
|
| 294 |
+
if not text or text in cache:
|
| 295 |
+
if "agnews" in dataset.lower():
|
| 296 |
+
text, label = get_agnews_example()
|
| 297 |
+
elif "sst2" in dataset.lower():
|
| 298 |
+
text, label = get_sst2_example()
|
| 299 |
+
elif "amazon" in dataset.lower():
|
| 300 |
+
text, label = get_amazon_example()
|
| 301 |
+
elif "imdb" in dataset.lower():
|
| 302 |
+
text, label = get_imdb_example()
|
| 303 |
+
|
| 304 |
+
cache.add(text)
|
| 305 |
|
| 306 |
result = None
|
| 307 |
+
attack_result = sent_attackers[
|
| 308 |
+
"tad-{}{}".format(dataset.lower(), attacker.lower())
|
| 309 |
+
].attacker.simple_attack(text, int(label))
|
| 310 |
if isinstance(attack_result, SuccessfulAttackResult):
|
| 311 |
+
if (
|
| 312 |
+
attack_result.perturbed_result.output
|
| 313 |
+
!= attack_result.original_result.ground_truth_output
|
| 314 |
+
) and (
|
| 315 |
+
attack_result.original_result.output
|
| 316 |
+
== attack_result.original_result.ground_truth_output
|
| 317 |
+
):
|
| 318 |
# with defense
|
| 319 |
+
result = tad_classifiers["tad-{}".format(dataset.lower())].infer(
|
| 320 |
+
attack_result.perturbed_result.attacked_text.text
|
| 321 |
+
+ "!ref!{},{},{}".format(
|
| 322 |
+
attack_result.original_result.ground_truth_output,
|
| 323 |
+
1,
|
| 324 |
+
attack_result.perturbed_result.output,
|
| 325 |
+
),
|
| 326 |
print_result=True,
|
| 327 |
+
defense="pwws",
|
| 328 |
)
|
| 329 |
|
| 330 |
if result:
|
| 331 |
classification_df = {}
|
| 332 |
+
classification_df["is_repaired"] = result["is_fixed"]
|
| 333 |
+
classification_df["pred_label"] = result["label"]
|
| 334 |
+
classification_df["confidence"] = round(result["confidence"], 3)
|
| 335 |
+
classification_df["is_correct"] = result["ref_label_check"]
|
| 336 |
|
| 337 |
advdetection_df = {}
|
| 338 |
+
if result["is_adv_label"] != "0":
|
| 339 |
+
advdetection_df["is_adversarial"] = {
|
| 340 |
+
"0": False,
|
| 341 |
+
"1": True,
|
| 342 |
+
0: False,
|
| 343 |
+
1: True,
|
| 344 |
+
}[result["is_adv_label"]]
|
| 345 |
+
advdetection_df["perturbed_label"] = result["perturbed_label"]
|
| 346 |
+
advdetection_df["confidence"] = round(result["is_adv_confidence"], 3)
|
| 347 |
# advdetection_df['ref_is_attack'] = result['ref_is_adv_label']
|
| 348 |
# advdetection_df['is_correct'] = result['ref_is_adv_check']
|
| 349 |
|
| 350 |
else:
|
| 351 |
return generate_adversarial_example(dataset, attacker)
|
| 352 |
|
| 353 |
+
return (
|
| 354 |
+
text,
|
| 355 |
+
label,
|
| 356 |
+
result["restored_text"],
|
| 357 |
+
result["label"],
|
| 358 |
+
attack_result.perturbed_result.attacked_text.text,
|
| 359 |
+
diff_texts(text, text),
|
| 360 |
+
diff_texts(text, attack_result.perturbed_result.attacked_text.text),
|
| 361 |
+
diff_texts(text, result["restored_text"]),
|
| 362 |
+
attack_result.perturbed_result.output,
|
| 363 |
+
pd.DataFrame(classification_df, index=[0]),
|
| 364 |
+
pd.DataFrame(advdetection_df, index=[0]),
|
| 365 |
+
)
|
| 366 |
|
| 367 |
|
| 368 |
demo = gr.Blocks()
|
|
|
|
| 369 |
with demo:
|
| 370 |
+
gr.Markdown(
|
| 371 |
+
"# <p align='center'> Reactive Perturbation Defocusing for Textual Adversarial Defense </p> "
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
gr.Markdown("## <p align='center'>Clarifications</p>")
|
| 375 |
+
gr.Markdown(
|
| 376 |
+
"- This demo has no mechanism to ensure the adversarial example will be correctly repaired by RPD."
|
| 377 |
+
" The repair success rate is actually the performance reported in the paper (approximately up to 97%.)"
|
| 378 |
+
)
|
| 379 |
+
gr.Markdown(
|
| 380 |
+
"- The red (+) and green (-) colors in the character edition indicate the character is added "
|
| 381 |
+
"or deleted in the adversarial example compared to the original input natural example."
|
| 382 |
+
)
|
| 383 |
+
gr.Markdown(
|
| 384 |
+
"- The adversarial example and repaired adversarial example may be unnatural to read, "
|
| 385 |
+
"while it is because the attackers usually generate unnatural perturbations."
|
| 386 |
+
"RPD does not introduce additional unnatural perturbations."
|
| 387 |
+
)
|
| 388 |
+
gr.Markdown(
|
| 389 |
+
"- To our best knowledge, Reactive Perturbation Defocusing is a novel approach in adversarial defense "
|
| 390 |
+
". RPD significantly (>10% defense accuracy improvement) outperforms the state-of-the-art methods."
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
gr.Markdown("## <p align='center'>Natural Example Input</p>")
|
| 395 |
+
with gr.Group():
|
| 396 |
+
with gr.Row():
|
| 397 |
+
input_dataset = gr.Radio(
|
| 398 |
+
choices=["SST2", "AGNews10K", "Amazon"],
|
| 399 |
+
value="SST2",
|
| 400 |
+
label="Select a testing dataset and an adversarial attacker to generate an adversarial example.",
|
| 401 |
+
)
|
| 402 |
+
input_attacker = gr.Radio(
|
| 403 |
+
choices=["BAE", "PWWS", "TextFooler"],
|
| 404 |
+
value="TextFooler",
|
| 405 |
+
label="Choose an Adversarial Attacker for generating an adversarial example to attack the model.",
|
| 406 |
+
)
|
| 407 |
+
with gr.Group():
|
| 408 |
+
with gr.Row():
|
| 409 |
+
input_sentence = gr.Textbox(
|
| 410 |
+
placeholder="Input a natural example...",
|
| 411 |
+
label="Alternatively, input a natural example and its original label to generate an adversarial example.",
|
| 412 |
+
)
|
| 413 |
+
input_label = gr.Textbox(
|
| 414 |
+
placeholder="Original label...", label="Original Label"
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
button_gen = gr.Button(
|
| 419 |
+
"Generate an adversarial example and repair using RPD (No GPU, Time:3-10 mins )",
|
| 420 |
+
variant="primary",
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
gr.Markdown(
|
| 424 |
+
"## <p align='center'>Generated Adversarial Example and Repaired Adversarial Example</p>"
|
| 425 |
+
)
|
| 426 |
+
with gr.Group():
|
| 427 |
with gr.Column():
|
| 428 |
+
with gr.Row():
|
| 429 |
+
output_original_example = gr.Textbox(label="Original Example")
|
| 430 |
+
output_original_label = gr.Textbox(label="Original Label")
|
| 431 |
+
with gr.Row():
|
| 432 |
+
output_adv_example = gr.Textbox(label="Adversarial Example")
|
| 433 |
+
output_adv_label = gr.Textbox(label="Perturbed Label")
|
| 434 |
+
with gr.Row():
|
| 435 |
+
output_repaired_example = gr.Textbox(label="Repaired Adversarial Example by RPD")
|
| 436 |
+
output_repaired_label = gr.Textbox(label="Repaired Label")
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
gr.Markdown("## <p align='center'>The Output of Reactive Perturbation Defocusing</p>")
|
| 440 |
+
with gr.Group():
|
| 441 |
+
output_is_adv_df = gr.DataFrame(label="Adversarial Example Detection Result")
|
| 442 |
+
gr.Markdown(
|
| 443 |
+
"The is_adversarial field indicates an adversarial example is detected. "
|
| 444 |
+
"The perturbed_label is the predicted label of the adversarial example. "
|
| 445 |
+
"The confidence field represents the confidence of the predicted adversarial example detection. "
|
| 446 |
+
)
|
| 447 |
+
output_df = gr.DataFrame(
|
| 448 |
+
label="Repaired Standard Classification Result"
|
| 449 |
+
)
|
| 450 |
+
gr.Markdown(
|
| 451 |
+
"If is_repaired=true, it has been repaired by RPD. "
|
| 452 |
+
"The pred_label field indicates the standard classification result. "
|
| 453 |
+
"The confidence field represents the confidence of the predicted label. "
|
| 454 |
+
"The is_correct field indicates whether the predicted label is correct."
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
gr.Markdown("## <p align='center'>Example Comparisons</p>")
|
| 459 |
+
ori_text_diff = gr.HighlightedText(
|
| 460 |
+
label="The Original Natural Example",
|
| 461 |
+
combine_adjacent=True,
|
| 462 |
+
)
|
| 463 |
+
adv_text_diff = gr.HighlightedText(
|
| 464 |
+
label="Character Editions of Adversarial Example Compared to the Natural Example",
|
| 465 |
+
combine_adjacent=True,
|
| 466 |
+
)
|
| 467 |
+
restored_text_diff = gr.HighlightedText(
|
| 468 |
+
label="Character Editions of Repaired Adversarial Example Compared to the Natural Example",
|
| 469 |
+
combine_adjacent=True,
|
| 470 |
+
)
|
| 471 |
|
| 472 |
# Bind functions to buttons
|
| 473 |
+
button_gen.click(
|
| 474 |
+
fn=generate_adversarial_example,
|
| 475 |
+
inputs=[input_dataset, input_attacker, input_sentence, input_label],
|
| 476 |
+
outputs=[
|
| 477 |
+
output_original_example,
|
| 478 |
+
output_original_label,
|
| 479 |
+
output_repaired_example,
|
| 480 |
+
output_repaired_label,
|
| 481 |
+
output_adv_example,
|
| 482 |
+
ori_text_diff,
|
| 483 |
+
adv_text_diff,
|
| 484 |
+
restored_text_diff,
|
| 485 |
+
output_adv_label,
|
| 486 |
+
output_df,
|
| 487 |
+
output_is_adv_df,
|
| 488 |
+
],
|
| 489 |
+
)
|
| 490 |
|
| 491 |
demo.launch()
|
checkpoints.zip
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f77ae4a45785183900ee874cb318a16b0e2f173b31749a2555215aca93672f26
|
| 3 |
+
size 2456834455
|
text_defense/202.IMDB10K/imdb10k.test.dat
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
text_defense/202.IMDB10K/imdb10k.train.dat
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
text_defense/202.IMDB10K/imdb10k.valid.dat
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|