Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,110 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
"""
|
| 5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 6 |
-
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
def respond(
|
| 11 |
-
message,
|
| 12 |
-
history: list[tuple[str, str]],
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
messages.append({"role": "user", "content": message})
|
| 27 |
-
|
| 28 |
-
response = ""
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
temperature=temperature,
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
):
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
|
|
|
| 1 |
+
# Install required dependencies
|
| 2 |
+
!pip install gradio transformers torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
+
import numpy as np
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 8 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# Load a free model from Hugging Face
|
| 11 |
+
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # Small model that works well for simple tasks
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 13 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Financial knowledge base - simple templates and responses
|
| 16 |
+
financial_templates = {
|
| 17 |
+
"budget": "Here's a simple budget template based on the 50/30/20 rule:\n- 50% for needs (rent, groceries, utilities)\n- 30% for wants (dining out, entertainment)\n- 20% for savings and debt repayment",
|
| 18 |
+
"emergency_fund": "An emergency fund should ideally cover 3-6 months of expenses. Start with a goal of $1,000, then build from there.",
|
| 19 |
+
"debt": "Focus on high-interest debt first (like credit cards). Consider the debt avalanche (highest interest first) or debt snowball (smallest balance first) methods.",
|
| 20 |
+
"investing": "For beginners, consider index funds or ETFs for diversification. Time in the market beats timing the market.",
|
| 21 |
+
"retirement": "Take advantage of employer matches in retirement accounts - it's free money. Start early to benefit from compound interest."
|
| 22 |
+
}
|
| 23 |
|
| 24 |
+
# Define guided chat flow
|
| 25 |
+
def guided_response(user_message, chat_history):
|
| 26 |
+
# Check if we should use a template response
|
| 27 |
+
for key, template in financial_templates.items():
|
| 28 |
+
if key in user_message.lower():
|
| 29 |
+
return template
|
| 30 |
+
|
| 31 |
+
# For more general queries, use the AI model
|
| 32 |
+
prompt = f"""<human>I need financial advice: {user_message}</human>
|
| 33 |
+
<assistant>"""
|
| 34 |
+
|
| 35 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 36 |
+
outputs = model.generate(
|
| 37 |
+
inputs["input_ids"],
|
| 38 |
+
max_length=512,
|
| 39 |
+
temperature=0.7,
|
| 40 |
+
do_sample=True,
|
| 41 |
+
pad_token_id=tokenizer.eos_token_id
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 45 |
+
# Extract just the assistant's response
|
| 46 |
+
if "<assistant>" in response:
|
| 47 |
+
response = response.split("<assistant>")[1].strip()
|
| 48 |
+
|
| 49 |
+
return response
|
| 50 |
|
| 51 |
+
# Create budget calculator function
|
| 52 |
+
def calculate_budget(monthly_income, housing, utilities, groceries, transportation):
|
| 53 |
+
total_needs = housing + utilities + groceries + transportation
|
| 54 |
+
needs_percent = (total_needs / monthly_income) * 100
|
| 55 |
+
|
| 56 |
+
available_for_wants = monthly_income * 0.3
|
| 57 |
+
available_for_savings = monthly_income * 0.2
|
| 58 |
+
|
| 59 |
+
return f"""Based on the 50/30/20 rule:
|
| 60 |
+
|
| 61 |
+
Current spending on needs: ${total_needs:.2f} ({needs_percent:.1f}% of income)
|
| 62 |
+
Recommended max for needs: ${monthly_income * 0.5:.2f} (50%)
|
| 63 |
+
|
| 64 |
+
Available for wants: ${available_for_wants:.2f} (30%)
|
| 65 |
+
Recommended for savings/debt: ${available_for_savings:.2f} (20%)
|
| 66 |
+
|
| 67 |
+
{'Your needs expenses are within recommended limits!' if needs_percent <= 50 else 'Your needs expenses exceed 50% of income. Consider areas to reduce spending.'}
|
| 68 |
+
"""
|
| 69 |
|
| 70 |
+
# Setup Gradio interface with tabs
|
| 71 |
+
with gr.Blocks() as app:
|
| 72 |
+
gr.Markdown("# Financial Advisor Bot")
|
| 73 |
+
|
| 74 |
+
with gr.Tab("Chat Advisor"):
|
| 75 |
+
chatbot = gr.Chatbot(height=400)
|
| 76 |
+
msg = gr.Textbox(label="Ask a question about personal finance")
|
| 77 |
+
clear = gr.Button("Clear")
|
| 78 |
+
|
| 79 |
+
def respond(message, chat_history):
|
| 80 |
+
bot_message = guided_response(message, chat_history)
|
| 81 |
+
chat_history.append((message, bot_message))
|
| 82 |
+
return "", chat_history
|
| 83 |
+
|
| 84 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
| 85 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
| 86 |
+
|
| 87 |
+
with gr.Tab("Budget Calculator"):
|
| 88 |
+
gr.Markdown("## 50/30/20 Budget Calculator")
|
| 89 |
+
with gr.Row():
|
| 90 |
+
income = gr.Number(label="Monthly Income (after tax)")
|
| 91 |
+
|
| 92 |
+
with gr.Row():
|
| 93 |
+
gr.Markdown("### Monthly Expenses (Needs)")
|
| 94 |
+
with gr.Row():
|
| 95 |
+
housing = gr.Number(label="Housing", value=0)
|
| 96 |
+
utilities = gr.Number(label="Utilities", value=0)
|
| 97 |
+
groceries = gr.Number(label="Groceries", value=0)
|
| 98 |
+
transport = gr.Number(label="Transportation", value=0)
|
| 99 |
+
|
| 100 |
+
calculate_btn = gr.Button("Calculate Budget")
|
| 101 |
+
output = gr.Textbox(label="Budget Analysis", lines=10)
|
| 102 |
+
|
| 103 |
+
calculate_btn.click(
|
| 104 |
+
calculate_budget,
|
| 105 |
+
inputs=[income, housing, utilities, groceries, transport],
|
| 106 |
+
outputs=output
|
| 107 |
+
)
|
| 108 |
|
| 109 |
+
# Launch the app in Colab
|
| 110 |
+
app.launch(share=True) # share=True creates a public link you can share with others
|