Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| import numpy as np | |
| import cv2 | |
| from PIL import Image | |
| import matplotlib.pyplot as plt | |
| from transformers import AutoImageProcessor, AutoModelForDepthEstimation | |
| from io import BytesIO | |
| # Load models | |
| image_processor = AutoImageProcessor.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf") | |
| model = AutoModelForDepthEstimation.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf") | |
| def process_image(image, total_degrade_steps=15): | |
| # Convert to PIL if needed | |
| if not isinstance(image, Image.Image): | |
| image = Image.fromarray(image) | |
| # Standardize size to 512x512 | |
| image = image.resize((512, 512), Image.LANCZOS) | |
| # Prepare image for the model | |
| inputs = image_processor(images=image.convert('RGB'), return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| predicted_depth = outputs.predicted_depth | |
| # Interpolate to original size | |
| prediction = torch.nn.functional.interpolate( | |
| predicted_depth.unsqueeze(1), | |
| size=image.size[::-1], | |
| mode="bicubic", | |
| align_corners=False, | |
| ) | |
| print(f'total_degrade_steps {total_degrade_steps}') | |
| # Normalize depth map to [0, 1] | |
| normalized_depth = (prediction - prediction.min()) / (prediction.max() - prediction.min()) | |
| normalized_depth = normalized_depth.squeeze().detach().cpu().numpy() | |
| # Convert original image to numpy array | |
| image_np = np.array(image) | |
| # Create a visualization of the depth map | |
| depth_visualization = (normalized_depth * 255).astype(np.uint8) | |
| depth_image = Image.fromarray(depth_visualization) | |
| # Create a copy of the original image to store the result | |
| result = np.copy(image_np) | |
| # Apply variable blur based on depth | |
| for i in range(total_degrade_steps): | |
| sigma = i * 2 + 1 | |
| print(f'sigma: {sigma}') | |
| interval = 0.9 / total_degrade_steps | |
| closer = 0.9 - (i * interval) | |
| further = 0.9 - ((i + 1) * interval) | |
| mask = (normalized_depth > further) & (normalized_depth <= closer) | |
| print(f'closer: {closer}, further: {further}') | |
| if np.any(mask): | |
| try: # Apply Gaussian blur with current kernel size | |
| blurred = cv2.GaussianBlur(image_np, (sigma, sigma), 0) | |
| # # Copy blurred pixels to the result where mask is True | |
| # mask_3d = np.stack([mask, mask, mask], axis=2) if len(image_np.shape) == 3 else mask | |
| # result = np.where(mask_3d, blurred, result) | |
| mask_3d = np.stack([mask, mask, mask], axis=2) | |
| result[mask_3d] = blurred[mask_3d] | |
| except Exception as e: | |
| print(f"Error applying blur with kernel size {sigma}: {e}") | |
| continue | |
| # Convert result back to PIL Image | |
| result_image = Image.fromarray(result.astype(np.uint8)) | |
| print(f'result_image size {result_image.size}') | |
| # # Create side-by-side comparison | |
| # combined_width = image.width * 2 | |
| # combined_height = image.height | |
| # combined_image = Image.new('RGB', (combined_width, combined_height)) | |
| # combined_image.paste(image, (0, 0)) | |
| # combined_image.paste(result_image, (image.width, 0)) | |
| return depth_image, result_image | |
| # Create Gradio interface | |
| with gr.Blocks(title="Depth-Based Blur Effect") as demo: | |
| gr.Markdown("# Depth-Based Blur Effect") | |
| gr.Markdown("This app applies variable Gaussian blur to images based on depth estimation. Objects farther from the camera appear more blurred, while closer objects remain sharper.") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(type="pil", label="Upload Image") | |
| total_steps = gr.Slider(minimum=5, maximum=20, value=15, step=1, label="Total Blur Levels") | |
| # show_depth = gr.Checkbox(value=True, label="Show Depth Map") | |
| submit_btn = gr.Button("Apply Depth-Based Blur") | |
| with gr.Column(): | |
| depth_map = gr.Image(type="pil", label="Depth Map") # Added format="png" | |
| output_image = gr.Image(type="numpy", label="Result (Original | Blurred)") | |
| submit_btn.click( | |
| process_image, | |
| inputs=[input_image, total_steps], | |
| outputs=[depth_map, output_image] | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| ["assets/sample.jpg"], | |
| ], | |
| inputs=input_image | |
| ) | |
| gr.Markdown(""" | |
| ## How it works | |
| 1. The app uses the Depth-Anything-V2-Small model to estimate depth in the image | |
| 2. Depth values are normalized to a range of 0-1 | |
| 3. A variable Gaussian blur is applied based on depth values | |
| 4. Objects farther from the camera (higher depth values) receive stronger blur | |
| 5. Objects closer to the camera (lower depth values) remain sharper | |
| This creates a realistic depth-of-field effect similar to what's seen in photography. | |
| """) | |
| # Launch the app | |
| demo.launch() | |