Ben Burtenshaw
commited on
Commit
·
142be7a
1
Parent(s):
5776d7d
fix prose
Browse files- pages/2_👩🏼🔬 Describe Domain.py +281 -0
- pages/3_🌱 Generate Dataset.py +205 -0
- pages/4_🔍 Review Generated Data.py +48 -0
pages/2_👩🏼🔬 Describe Domain.py
ADDED
|
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
|
| 3 |
+
import streamlit as st
|
| 4 |
+
|
| 5 |
+
from hub import push_dataset_to_hub, pull_seed_data_from_repo
|
| 6 |
+
from infer import query
|
| 7 |
+
from defaults import (
|
| 8 |
+
N_PERSPECTIVES,
|
| 9 |
+
N_TOPICS,
|
| 10 |
+
SEED_DATA_PATH,
|
| 11 |
+
PIPELINE_PATH,
|
| 12 |
+
DATASET_REPO_ID,
|
| 13 |
+
)
|
| 14 |
+
from utils import project_sidebar, create_seed_terms, create_application_instruction
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
st.set_page_config(
|
| 18 |
+
page_title="Domain Data Grower",
|
| 19 |
+
page_icon="🧑🌾",
|
| 20 |
+
)
|
| 21 |
+
project_sidebar()
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
################################################################################
|
| 25 |
+
# HEADER
|
| 26 |
+
################################################################################
|
| 27 |
+
|
| 28 |
+
st.header("🧑🌾 Domain Data Grower")
|
| 29 |
+
st.divider()
|
| 30 |
+
st.subheader(
|
| 31 |
+
"Step 2. Define the specific domain that you want to generate synthetic data for.",
|
| 32 |
+
)
|
| 33 |
+
st.write(
|
| 34 |
+
"Define the project details, including the project name, domain, and API credentials"
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
################################################################################
|
| 39 |
+
# LOAD EXISTING DOMAIN DATA
|
| 40 |
+
################################################################################
|
| 41 |
+
|
| 42 |
+
DATASET_REPO_ID = (
|
| 43 |
+
f"{st.session_state['hub_username']}/{st.session_state['project_name']}"
|
| 44 |
+
)
|
| 45 |
+
SEED_DATA = pull_seed_data_from_repo(
|
| 46 |
+
DATASET_REPO_ID, hub_token=st.session_state["hub_token"]
|
| 47 |
+
)
|
| 48 |
+
DEFAULT_DOMAIN = SEED_DATA.get("domain", "")
|
| 49 |
+
DEFAULT_PERSPECTIVES = SEED_DATA.get("perspectives", [""])
|
| 50 |
+
DEFAULT_TOPICS = SEED_DATA.get("topics", [""])
|
| 51 |
+
DEFAULT_EXAMPLES = SEED_DATA.get("examples", [{"question": "", "answer": ""}])
|
| 52 |
+
DEFAULT_SYSTEM_PROMPT = SEED_DATA.get("domain_expert_prompt", "")
|
| 53 |
+
|
| 54 |
+
################################################################################
|
| 55 |
+
# Domain Expert Section
|
| 56 |
+
################################################################################
|
| 57 |
+
|
| 58 |
+
(
|
| 59 |
+
tab_domain_expert,
|
| 60 |
+
tab_domain_perspectives,
|
| 61 |
+
tab_domain_topics,
|
| 62 |
+
tab_examples,
|
| 63 |
+
tab_raw_seed,
|
| 64 |
+
) = st.tabs(
|
| 65 |
+
tabs=[
|
| 66 |
+
"👩🏼🔬 Domain Expert",
|
| 67 |
+
"🔍 Domain Perspectives",
|
| 68 |
+
"🕸️ Domain Topics",
|
| 69 |
+
"📚 Examples",
|
| 70 |
+
"🌱 Raw Seed Data",
|
| 71 |
+
]
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
with tab_domain_expert:
|
| 75 |
+
st.text("Define the domain expertise that you want to train a language model")
|
| 76 |
+
st.info(
|
| 77 |
+
"A domain expert is a person who is an expert in a particular field or area. For example, a domain expert in farming would be someone who has extensive knowledge and experience in farming and agriculture."
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
domain = st.text_input("Domain Name", DEFAULT_DOMAIN)
|
| 81 |
+
|
| 82 |
+
domain_expert_prompt = st.text_area(
|
| 83 |
+
label="Domain Expert Definition",
|
| 84 |
+
value=DEFAULT_SYSTEM_PROMPT,
|
| 85 |
+
height=200,
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
################################################################################
|
| 89 |
+
# Domain Perspectives
|
| 90 |
+
################################################################################
|
| 91 |
+
|
| 92 |
+
with tab_domain_perspectives:
|
| 93 |
+
st.text("Define the different perspectives from which the domain can be viewed")
|
| 94 |
+
st.info(
|
| 95 |
+
"""
|
| 96 |
+
Perspectives are different viewpoints or angles from which a domain can be viewed.
|
| 97 |
+
For example, the domain of farming can be viewed from the perspective of a commercial
|
| 98 |
+
farmer or an independent family farmer."""
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
perspectives = st.session_state.get(
|
| 102 |
+
"perspectives",
|
| 103 |
+
[DEFAULT_PERSPECTIVES[0]],
|
| 104 |
+
)
|
| 105 |
+
perspectives_container = st.container()
|
| 106 |
+
|
| 107 |
+
perspectives = [
|
| 108 |
+
perspectives_container.text_input(
|
| 109 |
+
f"Domain Perspective {i + 1}", value=perspective
|
| 110 |
+
)
|
| 111 |
+
for i, perspective in enumerate(perspectives)
|
| 112 |
+
]
|
| 113 |
+
|
| 114 |
+
if st.button("Add Perspective", key="add_perspective"):
|
| 115 |
+
n = len(perspectives)
|
| 116 |
+
value = DEFAULT_PERSPECTIVES[n] if n < N_PERSPECTIVES else ""
|
| 117 |
+
perspectives.append(
|
| 118 |
+
perspectives_container.text_input(f"Domain Perspective {n + 1}", value="")
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
st.session_state["perspectives"] = perspectives
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
################################################################################
|
| 125 |
+
# Domain Topics
|
| 126 |
+
################################################################################
|
| 127 |
+
|
| 128 |
+
with tab_domain_topics:
|
| 129 |
+
st.text("Define the main themes or subjects that are relevant to the domain")
|
| 130 |
+
st.info(
|
| 131 |
+
"""Topics are the main themes or subjects that are relevant to the domain. For example, the domain of farming can have topics like soil health, crop rotation, or livestock management."""
|
| 132 |
+
)
|
| 133 |
+
topics = st.session_state.get(
|
| 134 |
+
"topics",
|
| 135 |
+
[DEFAULT_TOPICS[0]],
|
| 136 |
+
)
|
| 137 |
+
topics_container = st.container()
|
| 138 |
+
topics = [
|
| 139 |
+
topics_container.text_input(f"Domain Topic {i + 1}", value=topic)
|
| 140 |
+
for i, topic in enumerate(topics)
|
| 141 |
+
]
|
| 142 |
+
|
| 143 |
+
if st.button("Add Topic", key="add_topic"):
|
| 144 |
+
n = len(topics)
|
| 145 |
+
value = DEFAULT_TOPICS[n] if n < N_TOPICS else ""
|
| 146 |
+
topics.append(topics_container.text_input(f"Domain Topics {n + 1}", value=""))
|
| 147 |
+
|
| 148 |
+
st.session_state["topics"] = topics
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
################################################################################
|
| 152 |
+
# Examples Section
|
| 153 |
+
################################################################################
|
| 154 |
+
|
| 155 |
+
with tab_examples:
|
| 156 |
+
st.text(
|
| 157 |
+
"Add high-quality questions and answers that can be used to generate synthetic data"
|
| 158 |
+
)
|
| 159 |
+
st.info(
|
| 160 |
+
"""
|
| 161 |
+
Examples are high-quality questions and answers that can be used to generate
|
| 162 |
+
synthetic data for the domain. These examples will be used to train the language model
|
| 163 |
+
to generate questions and answers.
|
| 164 |
+
"""
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
examples = st.session_state.get(
|
| 168 |
+
"examples",
|
| 169 |
+
[
|
| 170 |
+
{
|
| 171 |
+
"question": "",
|
| 172 |
+
"answer": "",
|
| 173 |
+
}
|
| 174 |
+
],
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
for n, example in enumerate(examples, 1):
|
| 178 |
+
question = example["question"]
|
| 179 |
+
answer = example["answer"]
|
| 180 |
+
examples_container = st.container()
|
| 181 |
+
question_column, answer_column = examples_container.columns(2)
|
| 182 |
+
|
| 183 |
+
if st.button(f"Generate Answer {n}"):
|
| 184 |
+
if st.session_state["hub_token"] is None:
|
| 185 |
+
st.error("Please provide a Hub token to generate answers")
|
| 186 |
+
else:
|
| 187 |
+
answer = query(question, st.session_state["hub_token"])
|
| 188 |
+
with question_column:
|
| 189 |
+
question = st.text_area(f"Question {n}", value=question)
|
| 190 |
+
|
| 191 |
+
with answer_column:
|
| 192 |
+
answer = st.text_area(f"Answer {n}", value=answer)
|
| 193 |
+
examples[n - 1] = {"question": question, "answer": answer}
|
| 194 |
+
st.session_state["examples"] = examples
|
| 195 |
+
st.divider()
|
| 196 |
+
|
| 197 |
+
if st.button("Add Example"):
|
| 198 |
+
examples.append({"question": "", "answer": ""})
|
| 199 |
+
st.session_state["examples"] = examples
|
| 200 |
+
st.rerun()
|
| 201 |
+
|
| 202 |
+
################################################################################
|
| 203 |
+
# Save Domain Data
|
| 204 |
+
################################################################################
|
| 205 |
+
|
| 206 |
+
perspectives = list(filter(None, perspectives))
|
| 207 |
+
topics = list(filter(None, topics))
|
| 208 |
+
|
| 209 |
+
domain_data = {
|
| 210 |
+
"domain": domain,
|
| 211 |
+
"perspectives": perspectives,
|
| 212 |
+
"topics": topics,
|
| 213 |
+
"examples": examples,
|
| 214 |
+
"domain_expert_prompt": domain_expert_prompt,
|
| 215 |
+
"application_instruction": create_application_instruction(domain, examples),
|
| 216 |
+
"seed_terms": create_seed_terms(topics, perspectives),
|
| 217 |
+
}
|
| 218 |
+
|
| 219 |
+
with open(SEED_DATA_PATH, "w") as f:
|
| 220 |
+
json.dump(domain_data, f, indent=2)
|
| 221 |
+
|
| 222 |
+
with tab_raw_seed:
|
| 223 |
+
st.code(json.dumps(domain_data, indent=2), language="json", line_numbers=True)
|
| 224 |
+
|
| 225 |
+
################################################################################
|
| 226 |
+
# Setup Dataset on the Hub
|
| 227 |
+
################################################################################
|
| 228 |
+
|
| 229 |
+
st.divider()
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
if st.button("🤗 Push Dataset Seed") and all(
|
| 233 |
+
(
|
| 234 |
+
domain,
|
| 235 |
+
domain_expert_prompt,
|
| 236 |
+
perspectives,
|
| 237 |
+
topics,
|
| 238 |
+
examples,
|
| 239 |
+
)
|
| 240 |
+
):
|
| 241 |
+
if all(
|
| 242 |
+
(
|
| 243 |
+
st.session_state.get("project_name"),
|
| 244 |
+
st.session_state.get("hub_username"),
|
| 245 |
+
st.session_state.get("hub_token"),
|
| 246 |
+
)
|
| 247 |
+
):
|
| 248 |
+
project_name = st.session_state["project_name"]
|
| 249 |
+
hub_username = st.session_state["hub_username"]
|
| 250 |
+
hub_token = st.session_state["hub_token"]
|
| 251 |
+
else:
|
| 252 |
+
st.error(
|
| 253 |
+
"Please create a dataset repo on the Hub before pushing the dataset seed"
|
| 254 |
+
)
|
| 255 |
+
st.stop()
|
| 256 |
+
|
| 257 |
+
push_dataset_to_hub(
|
| 258 |
+
domain_seed_data_path=SEED_DATA_PATH,
|
| 259 |
+
project_name=project_name,
|
| 260 |
+
domain=domain,
|
| 261 |
+
hub_username=hub_username,
|
| 262 |
+
hub_token=hub_token,
|
| 263 |
+
pipeline_path=PIPELINE_PATH,
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
st.success(
|
| 267 |
+
f"Dataset seed created and pushed to the Hub. Check it out [here](https://huggingface.co/datasets/{hub_username}/{project_name})"
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
st.write("You can now move on to runnning your distilabel pipeline.")
|
| 271 |
+
|
| 272 |
+
st.page_link(
|
| 273 |
+
page="pages/3_🌱 Generate Dataset.py",
|
| 274 |
+
label="Generate Dataset",
|
| 275 |
+
icon="🌱",
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
else:
|
| 279 |
+
st.info(
|
| 280 |
+
"Please fill in all the required domain fields to push the dataset seed to the Hub"
|
| 281 |
+
)
|
pages/3_🌱 Generate Dataset.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
|
| 3 |
+
from defaults import ARGILLA_URL
|
| 4 |
+
from hub import push_pipeline_params
|
| 5 |
+
from utils import project_sidebar
|
| 6 |
+
|
| 7 |
+
st.set_page_config(
|
| 8 |
+
page_title="Domain Data Grower",
|
| 9 |
+
page_icon="🧑🌾",
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
project_sidebar()
|
| 13 |
+
|
| 14 |
+
################################################################################
|
| 15 |
+
# HEADER
|
| 16 |
+
################################################################################
|
| 17 |
+
|
| 18 |
+
st.header("🧑🌾 Domain Data Grower")
|
| 19 |
+
st.divider()
|
| 20 |
+
st.subheader("Step 3. Run the pipeline to generate synthetic data")
|
| 21 |
+
st.write("Define the distilabel pipeline for generating the dataset.")
|
| 22 |
+
|
| 23 |
+
hub_username = st.session_state.get("hub_username")
|
| 24 |
+
project_name = st.session_state.get("project_name")
|
| 25 |
+
hub_token = st.session_state.get("hub_token")
|
| 26 |
+
|
| 27 |
+
###############################################################
|
| 28 |
+
# CONFIGURATION
|
| 29 |
+
###############################################################
|
| 30 |
+
|
| 31 |
+
st.divider()
|
| 32 |
+
|
| 33 |
+
st.markdown("## 🧰 Pipeline Configuration")
|
| 34 |
+
|
| 35 |
+
st.write(
|
| 36 |
+
"Now we need to define the configuration for the pipeline that will generate the synthetic data."
|
| 37 |
+
)
|
| 38 |
+
st.write(
|
| 39 |
+
"⚠️ Model and parameter choices significantly affect the quality of the generated data. \
|
| 40 |
+
We reccomend that you start with generating a few samples and review the data. Then scale up from there. \
|
| 41 |
+
You can run the pipeline multiple times with different configurations and append it to the same Argilla dataset."
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
st.markdown("#### 🤖 Inference configuration")
|
| 46 |
+
|
| 47 |
+
st.write(
|
| 48 |
+
"Add the url of the Huggingface inference API or endpoint that your pipeline should use. You can find compatible models here:"
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
with st.expander("🤗 Recommended Models"):
|
| 52 |
+
st.write("All inference endpoint compatible models can be found via the link below")
|
| 53 |
+
st.link_button(
|
| 54 |
+
"🤗 Inference compaptible models on the hub",
|
| 55 |
+
"https://huggingface.co/models?pipeline_tag=text-generation&other=endpoints_compatible&sort=trending",
|
| 56 |
+
)
|
| 57 |
+
st.write("🔋Projects with sufficient resources could take advantage of LLama3 70b")
|
| 58 |
+
st.code(
|
| 59 |
+
"https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
st.write("🪫Projects with less resources could take advantage of LLama 3 8b")
|
| 63 |
+
st.code(
|
| 64 |
+
"https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
st.write("🍃Projects with even less resources could use Phi-3-mini-4k-instruct")
|
| 68 |
+
st.code(
|
| 69 |
+
"https://api-inference.huggingface.co/models/microsoft/Phi-3-mini-4k-instruct"
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
st.write("Note Hugggingface Pro gives access to more compute resources")
|
| 73 |
+
st.link_button(
|
| 74 |
+
"🤗 Huggingface Pro",
|
| 75 |
+
"https://huggingface.co/pricing",
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
self_instruct_base_url = st.text_input(
|
| 80 |
+
label="Model base URL for instruction generation",
|
| 81 |
+
value="https://api-inference.huggingface.co/models/microsoft/Phi-3-mini-4k-instruct",
|
| 82 |
+
)
|
| 83 |
+
domain_expert_base_url = st.text_input(
|
| 84 |
+
label="Model base URL for domain expert response",
|
| 85 |
+
value="https://api-inference.huggingface.co/models/microsoft/Phi-3-mini-4k-instruct",
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
st.divider()
|
| 89 |
+
st.markdown("#### 🧮 Parameters configuration")
|
| 90 |
+
|
| 91 |
+
self_intruct_num_generations = st.slider(
|
| 92 |
+
"Number of generations for self-instruction", 1, 10, 2
|
| 93 |
+
)
|
| 94 |
+
domain_expert_num_generations = st.slider(
|
| 95 |
+
"Number of generations for domain expert response", 1, 10, 2
|
| 96 |
+
)
|
| 97 |
+
self_instruct_temperature = st.slider("Temperature for self-instruction", 0.1, 1.0, 0.9)
|
| 98 |
+
domain_expert_temperature = st.slider("Temperature for domain expert", 0.1, 1.0, 0.9)
|
| 99 |
+
|
| 100 |
+
st.divider()
|
| 101 |
+
st.markdown("#### 🔬 Argilla API details to push the generated dataset")
|
| 102 |
+
argilla_url = st.text_input("Argilla API URL", ARGILLA_URL)
|
| 103 |
+
argilla_api_key = st.text_input("Argilla API Key", "owner.apikey")
|
| 104 |
+
argilla_dataset_name = st.text_input("Argilla Dataset Name", project_name)
|
| 105 |
+
st.divider()
|
| 106 |
+
|
| 107 |
+
###############################################################
|
| 108 |
+
# LOCAL
|
| 109 |
+
###############################################################
|
| 110 |
+
|
| 111 |
+
st.markdown("## Run the pipeline")
|
| 112 |
+
|
| 113 |
+
st.markdown(
|
| 114 |
+
"Once you've defined the pipeline configuration above, you can run the pipeline from your local machine."
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
if all(
|
| 119 |
+
[
|
| 120 |
+
argilla_api_key,
|
| 121 |
+
argilla_url,
|
| 122 |
+
self_instruct_base_url,
|
| 123 |
+
domain_expert_base_url,
|
| 124 |
+
self_intruct_num_generations,
|
| 125 |
+
domain_expert_num_generations,
|
| 126 |
+
self_instruct_temperature,
|
| 127 |
+
domain_expert_temperature,
|
| 128 |
+
hub_username,
|
| 129 |
+
project_name,
|
| 130 |
+
hub_token,
|
| 131 |
+
argilla_dataset_name,
|
| 132 |
+
]
|
| 133 |
+
) and st.button("💾 Save Pipeline Config"):
|
| 134 |
+
with st.spinner("Pushing pipeline to the Hub..."):
|
| 135 |
+
push_pipeline_params(
|
| 136 |
+
pipeline_params={
|
| 137 |
+
"argilla_api_key": argilla_api_key,
|
| 138 |
+
"argilla_api_url": argilla_url,
|
| 139 |
+
"argilla_dataset_name": argilla_dataset_name,
|
| 140 |
+
"self_instruct_base_url": self_instruct_base_url,
|
| 141 |
+
"domain_expert_base_url": domain_expert_base_url,
|
| 142 |
+
"self_instruct_temperature": self_instruct_temperature,
|
| 143 |
+
"domain_expert_temperature": domain_expert_temperature,
|
| 144 |
+
"self_intruct_num_generations": self_intruct_num_generations,
|
| 145 |
+
"domain_expert_num_generations": domain_expert_num_generations,
|
| 146 |
+
},
|
| 147 |
+
hub_username=hub_username,
|
| 148 |
+
hub_token=hub_token,
|
| 149 |
+
project_name=project_name,
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
st.success(
|
| 153 |
+
f"Pipeline configuration pushed to the dataset repo {hub_username}/{project_name} on the Hub."
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
st.markdown(
|
| 157 |
+
"To run the pipeline locally, you need to have the `distilabel` library installed. You can install it using the following command:"
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
st.code(
|
| 161 |
+
f"""
|
| 162 |
+
|
| 163 |
+
# Install the distilabel library
|
| 164 |
+
pip install distilabel
|
| 165 |
+
"""
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
st.markdown("Next, you'll need to clone your dataset repo and run the pipeline:")
|
| 169 |
+
|
| 170 |
+
st.code(
|
| 171 |
+
f"""
|
| 172 |
+
git clone https://github.com/huggingface/data-is-better-together
|
| 173 |
+
cd data-is-better-together/domain-specific-datasets/pipelines
|
| 174 |
+
pip install -r requirements.txt
|
| 175 |
+
"""
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
st.markdown("Finally, you can run the pipeline using the following command:")
|
| 179 |
+
|
| 180 |
+
st.code(
|
| 181 |
+
f"""
|
| 182 |
+
huggingface-cli login
|
| 183 |
+
python domain_expert_pipeline.py {hub_username}/{project_name}""",
|
| 184 |
+
language="bash",
|
| 185 |
+
)
|
| 186 |
+
st.markdown(
|
| 187 |
+
"👩🚀 If you want to customise the pipeline take a look in `pipeline.py` and teh [distilabel docs](https://distilabel.argilla.io/)"
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
st.markdown(
|
| 191 |
+
"🚀 Once you've run the pipeline your records will be available in the Argilla space"
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
st.link_button("🔗 Argilla Space", argilla_url)
|
| 195 |
+
|
| 196 |
+
st.markdown("Once you've reviewed the data, you can publish it on the next page:")
|
| 197 |
+
|
| 198 |
+
st.page_link(
|
| 199 |
+
page="pages/4_🔍 Review Generated Data.py",
|
| 200 |
+
label="Review Generated Data",
|
| 201 |
+
icon="🔍",
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
else:
|
| 205 |
+
st.info("Please fill all the required fields.")
|
pages/4_🔍 Review Generated Data.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
|
| 3 |
+
from defaults import PROJECT_NAME, ARGILLA_URL, DATASET_REPO_ID
|
| 4 |
+
from utils import project_sidebar
|
| 5 |
+
from hub import push_argilla_dataset_to_hub
|
| 6 |
+
|
| 7 |
+
st.set_page_config(
|
| 8 |
+
page_title="Domain Data Grower",
|
| 9 |
+
page_icon="🧑🌾",
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
project_sidebar()
|
| 13 |
+
|
| 14 |
+
################################################################################
|
| 15 |
+
# HEADER
|
| 16 |
+
################################################################################
|
| 17 |
+
|
| 18 |
+
st.header("🧑🌾 Domain Data Grower")
|
| 19 |
+
st.divider()
|
| 20 |
+
|
| 21 |
+
st.write(
|
| 22 |
+
"""Once you have reviewed the synthetic data in Argilla, you can publish the
|
| 23 |
+
generated dataset to the Hub."""
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
################################################################################
|
| 28 |
+
# Configuration
|
| 29 |
+
################################################################################
|
| 30 |
+
|
| 31 |
+
st.divider()
|
| 32 |
+
st.write("🔬 Argilla API details to push the generated dataset")
|
| 33 |
+
argilla_url = st.text_input("Argilla API URL", ARGILLA_URL)
|
| 34 |
+
argilla_api_key = st.text_input("Argilla API Key", "owner.apikey")
|
| 35 |
+
argilla_dataset_name = st.text_input("Argilla Dataset Name", PROJECT_NAME)
|
| 36 |
+
dataset_repo_id = st.text_input("Dataset Repo ID", DATASET_REPO_ID)
|
| 37 |
+
st.divider()
|
| 38 |
+
|
| 39 |
+
if st.button("🚀 Publish the generated dataset"):
|
| 40 |
+
with st.spinner("Publishing the generated dataset..."):
|
| 41 |
+
push_argilla_dataset_to_hub(
|
| 42 |
+
name=argilla_dataset_name,
|
| 43 |
+
repo_id=dataset_repo_id,
|
| 44 |
+
url=argilla_url,
|
| 45 |
+
api_key=argilla_api_key,
|
| 46 |
+
workspace="admin",
|
| 47 |
+
)
|
| 48 |
+
st.success("The generated dataset has been published to the Hub.")
|