Spaces:
Runtime error
Runtime error
Commit
·
c931653
1
Parent(s):
48548de
feat: add payload code
Browse files
app.py
CHANGED
|
@@ -16,7 +16,9 @@ completed_record_events = Queue()
|
|
| 16 |
def build_dataset(client: rg.Argilla) -> rg.Dataset:
|
| 17 |
settings = rg.Settings.from_hub("stanfordnlp/imdb")
|
| 18 |
|
| 19 |
-
settings.questions.add(
|
|
|
|
|
|
|
| 20 |
|
| 21 |
dataset_name = "stanfordnlp_imdb"
|
| 22 |
dataset = client.datasets(dataset_name) or rg.Dataset.from_hub(
|
|
@@ -24,7 +26,7 @@ def build_dataset(client: rg.Argilla) -> rg.Dataset:
|
|
| 24 |
name=dataset_name,
|
| 25 |
settings=settings,
|
| 26 |
client=client,
|
| 27 |
-
split="train[:1000]"
|
| 28 |
)
|
| 29 |
|
| 30 |
return dataset
|
|
@@ -33,7 +35,9 @@ def build_dataset(client: rg.Argilla) -> rg.Dataset:
|
|
| 33 |
with gr.Blocks() as demo:
|
| 34 |
argilla_server = client.http_client.base_url
|
| 35 |
gr.Markdown("## Argilla Events")
|
| 36 |
-
gr.Markdown(
|
|
|
|
|
|
|
| 37 |
gr.Markdown("### Record Events")
|
| 38 |
gr.Markdown("#### Records are processed in background and suggestions are added.")
|
| 39 |
|
|
@@ -72,7 +76,6 @@ def add_record_suggestions_on_response_created():
|
|
| 72 |
continue
|
| 73 |
|
| 74 |
# Prepare predict data
|
| 75 |
-
|
| 76 |
field = dataset.settings.fields["text"]
|
| 77 |
question = dataset.settings.questions["sentiment"]
|
| 78 |
|
|
@@ -93,7 +96,9 @@ def add_record_suggestions_on_response_created():
|
|
| 93 |
if not some_pending_records:
|
| 94 |
continue
|
| 95 |
|
| 96 |
-
some_pending_records = parse_pending_records(
|
|
|
|
|
|
|
| 97 |
dataset.records.log(some_pending_records)
|
| 98 |
|
| 99 |
except Exception:
|
|
@@ -105,42 +110,33 @@ def parse_pending_records(
|
|
| 105 |
records: List[rg.Record],
|
| 106 |
field: rg.Field,
|
| 107 |
question,
|
| 108 |
-
example_records: List[rg.Record]
|
| 109 |
) -> List[rg.Record]:
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
"results": [{"value": "positive", "score": None, "agent": "mock"} for _ in records]
|
| 133 |
-
}
|
| 134 |
-
|
| 135 |
-
for record, suggestion in zip(records, response["results"]):
|
| 136 |
-
record.suggestions.add(
|
| 137 |
-
rg.Suggestion(
|
| 138 |
-
question_name=question.name,
|
| 139 |
-
value=suggestion["value"],
|
| 140 |
-
score=suggestion["score"],
|
| 141 |
-
agent=suggestion["agent"],
|
| 142 |
)
|
| 143 |
-
|
|
|
|
| 144 |
|
| 145 |
return records
|
| 146 |
|
|
|
|
| 16 |
def build_dataset(client: rg.Argilla) -> rg.Dataset:
|
| 17 |
settings = rg.Settings.from_hub("stanfordnlp/imdb")
|
| 18 |
|
| 19 |
+
settings.questions.add(
|
| 20 |
+
rg.LabelQuestion(name="sentiment", labels=["negative", "positive"])
|
| 21 |
+
)
|
| 22 |
|
| 23 |
dataset_name = "stanfordnlp_imdb"
|
| 24 |
dataset = client.datasets(dataset_name) or rg.Dataset.from_hub(
|
|
|
|
| 26 |
name=dataset_name,
|
| 27 |
settings=settings,
|
| 28 |
client=client,
|
| 29 |
+
split="train[:1000]",
|
| 30 |
)
|
| 31 |
|
| 32 |
return dataset
|
|
|
|
| 35 |
with gr.Blocks() as demo:
|
| 36 |
argilla_server = client.http_client.base_url
|
| 37 |
gr.Markdown("## Argilla Events")
|
| 38 |
+
gr.Markdown(
|
| 39 |
+
f"This demo shows the incoming events from the [Argilla Server]({argilla_server})."
|
| 40 |
+
)
|
| 41 |
gr.Markdown("### Record Events")
|
| 42 |
gr.Markdown("#### Records are processed in background and suggestions are added.")
|
| 43 |
|
|
|
|
| 76 |
continue
|
| 77 |
|
| 78 |
# Prepare predict data
|
|
|
|
| 79 |
field = dataset.settings.fields["text"]
|
| 80 |
question = dataset.settings.questions["sentiment"]
|
| 81 |
|
|
|
|
| 96 |
if not some_pending_records:
|
| 97 |
continue
|
| 98 |
|
| 99 |
+
some_pending_records = parse_pending_records(
|
| 100 |
+
some_pending_records, field, question, examples
|
| 101 |
+
)
|
| 102 |
dataset.records.log(some_pending_records)
|
| 103 |
|
| 104 |
except Exception:
|
|
|
|
| 110 |
records: List[rg.Record],
|
| 111 |
field: rg.Field,
|
| 112 |
question,
|
| 113 |
+
example_records: List[rg.Record],
|
| 114 |
) -> List[rg.Record]:
|
| 115 |
+
try:
|
| 116 |
+
gradio_client = Client("davidberenstein1957/distilabel-argilla-labeller")
|
| 117 |
+
|
| 118 |
+
payload = {
|
| 119 |
+
"records": [record.to_dict() for record in records],
|
| 120 |
+
"fields": [field.serialize()],
|
| 121 |
+
"question": question.serialize(),
|
| 122 |
+
"example_records": [record.to_dict() for record in example_records],
|
| 123 |
+
"api_name": "/predict",
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
response = gradio_client.predict(**payload)
|
| 127 |
+
response = json.loads(response) if isinstance(response, str) else response
|
| 128 |
+
|
| 129 |
+
for record, suggestion in zip(records, response["results"]):
|
| 130 |
+
record.suggestions.add(
|
| 131 |
+
rg.Suggestion(
|
| 132 |
+
question_name=question.name,
|
| 133 |
+
value=suggestion["value"],
|
| 134 |
+
score=suggestion["score"],
|
| 135 |
+
agent=suggestion["agent"],
|
| 136 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
)
|
| 138 |
+
except Exception:
|
| 139 |
+
print(traceback.format_exc())
|
| 140 |
|
| 141 |
return records
|
| 142 |
|