Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,45 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
from firebase_admin import credentials, db
|
| 5 |
-
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
| 6 |
-
from transformers import RagRetriever
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
retriever = RagRetriever.from_pretrained(
|
| 9 |
"facebook/rag-token-base",
|
| 10 |
use_dummy_dataset=True,
|
| 11 |
trust_remote_code=True
|
| 12 |
)
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
# Initialize Firebase Admin SDK
|
| 17 |
-
firebase_credential = os.getenv("FIREBASE_CREDENTIALS")
|
| 18 |
-
if not firebase_credential:
|
| 19 |
-
raise RuntimeError("FIREBASE_CREDENTIALS environment variable is not set.")
|
| 20 |
-
|
| 21 |
-
# Save Firebase credentials to a temporary file
|
| 22 |
-
with open("serviceAccountKey.json", "w") as f:
|
| 23 |
-
f.write(firebase_credential)
|
| 24 |
-
|
| 25 |
-
# Initialize Firebase App
|
| 26 |
-
cred = credentials.Certificate("serviceAccountKey.json")
|
| 27 |
-
firebase_admin.initialize_app(cred, {"databaseURL": "https://your-database-name.firebaseio.com/"})
|
| 28 |
-
|
| 29 |
-
# Load the RAG model, tokenizer, and retriever
|
| 30 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-base")
|
| 31 |
-
|
|
|
|
| 32 |
model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-base")
|
| 33 |
|
| 34 |
-
#
|
| 35 |
-
def generate_answer(question
|
| 36 |
-
# Tokenize the question
|
| 37 |
inputs = tokenizer(question, return_tensors="pt")
|
| 38 |
|
| 39 |
-
# Retrieve relevant documents
|
| 40 |
-
|
| 41 |
-
|
| 42 |
|
| 43 |
-
#
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
| 46 |
|
| 47 |
-
# Decode the generated answer
|
| 48 |
-
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 49 |
-
return answer
|
| 50 |
-
|
| 51 |
-
# Gradio interface function
|
| 52 |
-
def dashboard(question):
|
| 53 |
-
# Generate the answer from the RAG model
|
| 54 |
-
answer = generate_answer(question)
|
| 55 |
return answer
|
| 56 |
|
| 57 |
-
#
|
| 58 |
-
interface = gr.Interface(fn=dashboard, inputs="text", outputs="text")
|
| 59 |
-
|
| 60 |
-
# Launch the Gradio app
|
| 61 |
if __name__ == "__main__":
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import RagRetriever, RagTokenizer, RagSequenceForGeneration
|
| 3 |
+
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
# Step 1: Load the dataset with the trust_remote_code flag enabled
|
| 6 |
+
dataset = load_dataset("wiki_dpr", trust_remote_code=True)
|
| 7 |
+
|
| 8 |
+
# Step 2: Load the retriever using the pre-trained model, with use_dummy_dataset=True and trust_remote_code=True
|
| 9 |
retriever = RagRetriever.from_pretrained(
|
| 10 |
"facebook/rag-token-base",
|
| 11 |
use_dummy_dataset=True,
|
| 12 |
trust_remote_code=True
|
| 13 |
)
|
| 14 |
|
| 15 |
+
# Step 3: Load the tokenizer for the RAG model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-base")
|
| 17 |
+
|
| 18 |
+
# Step 4: Initialize the RAG model
|
| 19 |
model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-base")
|
| 20 |
|
| 21 |
+
# Step 5: Define a function to generate an answer using the retriever and model
|
| 22 |
+
def generate_answer(question):
|
| 23 |
+
# Tokenize the question
|
| 24 |
inputs = tokenizer(question, return_tensors="pt")
|
| 25 |
|
| 26 |
+
# Retrieve relevant documents using the retriever
|
| 27 |
+
input_ids = inputs["input_ids"]
|
| 28 |
+
retrieved_doc_ids = retriever.retrieve(input_ids)
|
| 29 |
|
| 30 |
+
# Use the model to generate an answer based on the retrieved documents
|
| 31 |
+
generated_ids = model.generate(input_ids, context_input_ids=retrieved_doc_ids["context_input_ids"])
|
| 32 |
+
|
| 33 |
+
# Decode the generated answer back to text
|
| 34 |
+
answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
return answer
|
| 37 |
|
| 38 |
+
# Step 6: Example usage
|
|
|
|
|
|
|
|
|
|
| 39 |
if __name__ == "__main__":
|
| 40 |
+
question = "Who was the first president of the United States?"
|
| 41 |
+
print(f"Question: {question}")
|
| 42 |
+
|
| 43 |
+
# Generate and print the answer
|
| 44 |
+
answer = generate_answer(question)
|
| 45 |
+
print(f"Answer: {answer}")
|