Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from langchain import PromptTemplate | |
| from langchain.llms import HuggingFaceHub | |
| from langchain.chains import RetrievalQA | |
| from langchain.embeddings import SentenceTransformerEmbeddings | |
| from qdrant_client import QdrantClient | |
| from langchain.vectorstores import Qdrant | |
| from huggingface_hub import login | |
| from langchain.document_loaders import PyPDFLoader | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.vectorstores import Chroma | |
| import os | |
| # Set up Streamlit UI | |
| st.title("HuggingFace QA with Langchain and Qdrant") | |
| st.write("This app leverages a Language Model to provide answers to your questions using retrieved context.") | |
| # Load HuggingFace token from environment variable for HuggingFace Space | |
| huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
| # Log in to HuggingFace Hub | |
| if huggingface_token: | |
| login(token=huggingface_token) | |
| else: | |
| st.error("HuggingFace token not found. Please set the HUGGINGFACE_TOKEN environment variable.") | |
| # HuggingFace Inference API Configuration | |
| config = { | |
| 'max_new_tokens': 1024, | |
| 'temperature': 0.1, | |
| 'top_k': 50, | |
| 'top_p': 0.9 | |
| } | |
| # Use HuggingFaceHub for LLM | |
| llm = HuggingFaceHub(repo_id="stanford-crfm/BioMedLM", model_kwargs=config, huggingfacehub_api_token=huggingface_token) | |
| st.write("LLM Initialized....") | |
| prompt_template = """Use the following pieces of information to answer the user's question. | |
| If you don't know the answer, just say that you don't know, don't try to make up an answer. | |
| Context: {context} | |
| Question: {question} | |
| Only return the helpful answer below and nothing else. | |
| Helpful answer: | |
| """ | |
| embeddings = SentenceTransformerEmbeddings(model_name="NeuML/pubmedbert-base-embeddings") | |
| # PDF Loader and Document Processing | |
| uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"]) | |
| if uploaded_file is not None: | |
| loader = PyPDFLoader(uploaded_file) | |
| documents = loader.load() | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
| docs = text_splitter.split_documents(documents) | |
| # Create Chroma Vector Store from PDF | |
| db = Chroma.from_documents(docs, embeddings) | |
| retriever = db.as_retriever(search_kwargs={"k": 1}) | |
| else: | |
| # Use Qdrant if no PDF is uploaded | |
| url = "http://localhost:6333" | |
| client = QdrantClient( | |
| url=url, prefer_grpc=False | |
| ) | |
| db = Qdrant(client=client, embeddings=embeddings, collection_name="vector_db") | |
| retriever = db.as_retriever(search_kwargs={"k": 1}) | |
| prompt = PromptTemplate(template=prompt_template, input_variables=['context', 'question']) | |
| # Streamlit Form to get user input | |
| with st.form(key='query_form'): | |
| query = st.text_input("Enter your question here:") | |
| submit_button = st.form_submit_button(label='Get Answer') | |
| # Handle form submission | |
| if submit_button and query: | |
| chain_type_kwargs = {"prompt": prompt} | |
| qa = RetrievalQA.from_chain_type( | |
| llm=llm, | |
| chain_type="stuff", | |
| retriever=retriever, | |
| return_source_documents=True, | |
| chain_type_kwargs=chain_type_kwargs, | |
| verbose=True | |
| ) | |
| response = qa(query) | |
| answer = response['result'] | |
| source_document = response['source_documents'][0].page_content | |
| doc = response['source_documents'][0].metadata.get('source', 'Uploaded PDF') | |
| # Display the results | |
| st.write("## Answer:") | |
| st.write(answer) | |
| st.write("## Source Document:") | |
| st.write(source_document) | |
| st.write("## Document Source:") | |
| st.write(doc) | |