Spaces:
Running
Running
Arjun Moorthy
commited on
Commit
Β·
2720b05
1
Parent(s):
da47961
Optimize for hardware constraints - make RAG optional and lightweight
Browse files- Oncolife/app.py +59 -52
- requirements.txt +1 -11
Oncolife/app.py
CHANGED
|
@@ -4,7 +4,7 @@ OncoLife Symptom & Triage Assistant
|
|
| 4 |
A medical chatbot that performs both symptom assessment and clinical triage for chemotherapy patients.
|
| 5 |
Updated: Using BioMistral-7B base model for medical conversations.
|
| 6 |
REBUILD: Simplified to use only base model, no adapters.
|
| 7 |
-
RAG: Added document retrieval capabilities for PDFs and other reference materials.
|
| 8 |
"""
|
| 9 |
|
| 10 |
import gradio as gr
|
|
@@ -15,14 +15,19 @@ from transformers import AutoTokenizer, MistralForCausalLM
|
|
| 15 |
import torch
|
| 16 |
from spaces import GPU
|
| 17 |
|
| 18 |
-
# RAG imports
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
import
|
| 22 |
-
import
|
| 23 |
-
|
| 24 |
-
from langchain.
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
# Force GPU detection for HF Spaces
|
| 28 |
@GPU
|
|
@@ -51,8 +56,18 @@ class OncoLifeAssistant:
|
|
| 51 |
# Load the OncoLife instructions
|
| 52 |
self._load_instructions()
|
| 53 |
|
| 54 |
-
# Initialize RAG system
|
| 55 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
def _load_instructions(self):
|
| 58 |
"""Load the OncoLife instructions from the text file"""
|
|
@@ -70,15 +85,15 @@ class OncoLifeAssistant:
|
|
| 70 |
self.instructions = ""
|
| 71 |
|
| 72 |
def _initialize_rag(self):
|
| 73 |
-
"""Initialize the RAG system with document embeddings"""
|
| 74 |
try:
|
| 75 |
-
print("π Initializing RAG system...")
|
| 76 |
|
| 77 |
-
#
|
| 78 |
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 79 |
print("β
Loaded embedding model")
|
| 80 |
|
| 81 |
-
# Initialize ChromaDB
|
| 82 |
self.chroma_client = chromadb.Client()
|
| 83 |
self.collection = self.chroma_client.create_collection(
|
| 84 |
name="oncolife_documents",
|
|
@@ -86,19 +101,20 @@ class OncoLifeAssistant:
|
|
| 86 |
)
|
| 87 |
print("β
Initialized ChromaDB collection")
|
| 88 |
|
| 89 |
-
# Load and process documents
|
| 90 |
-
self.
|
| 91 |
|
| 92 |
except Exception as e:
|
| 93 |
print(f"β Error initializing RAG: {e}")
|
| 94 |
self.embedding_model = None
|
| 95 |
self.collection = None
|
|
|
|
| 96 |
|
| 97 |
-
def
|
| 98 |
-
"""Load
|
| 99 |
try:
|
| 100 |
docs_path = Path(__file__).parent / "guideline-docs"
|
| 101 |
-
print(f"π Loading documents from: {docs_path}")
|
| 102 |
|
| 103 |
if not docs_path.exists():
|
| 104 |
print("β οΈ guideline-docs directory not found")
|
|
@@ -106,27 +122,14 @@ class OncoLifeAssistant:
|
|
| 106 |
|
| 107 |
# Text splitter for chunking documents
|
| 108 |
text_splitter = RecursiveCharacterTextSplitter(
|
| 109 |
-
chunk_size=
|
| 110 |
-
chunk_overlap=
|
| 111 |
separators=["\n\n", "\n", ". ", " ", ""]
|
| 112 |
)
|
| 113 |
|
| 114 |
documents_loaded = 0
|
| 115 |
|
| 116 |
-
#
|
| 117 |
-
for pdf_file in docs_path.glob("*.pdf"):
|
| 118 |
-
try:
|
| 119 |
-
print(f"π Processing PDF: {pdf_file.name}")
|
| 120 |
-
text = self._extract_pdf_text(pdf_file)
|
| 121 |
-
if text:
|
| 122 |
-
chunks = text_splitter.split_text(text)
|
| 123 |
-
self._add_chunks_to_db(chunks, pdf_file.name)
|
| 124 |
-
documents_loaded += 1
|
| 125 |
-
print(f"β
Added {len(chunks)} chunks from {pdf_file.name}")
|
| 126 |
-
except Exception as e:
|
| 127 |
-
print(f"β Error processing {pdf_file.name}: {e}")
|
| 128 |
-
|
| 129 |
-
# Process JSON files
|
| 130 |
for json_file in docs_path.glob("*.json"):
|
| 131 |
try:
|
| 132 |
print(f"π Processing JSON: {json_file.name}")
|
|
@@ -141,7 +144,7 @@ class OncoLifeAssistant:
|
|
| 141 |
except Exception as e:
|
| 142 |
print(f"β Error processing {json_file.name}: {e}")
|
| 143 |
|
| 144 |
-
# Process text files
|
| 145 |
for txt_file in docs_path.glob("*.txt"):
|
| 146 |
try:
|
| 147 |
print(f"π Processing TXT: {txt_file.name}")
|
|
@@ -222,10 +225,10 @@ class OncoLifeAssistant:
|
|
| 222 |
except Exception as e:
|
| 223 |
print(f"β Error adding chunks to database: {e}")
|
| 224 |
|
| 225 |
-
def _retrieve_relevant_documents(self, query, top_k=
|
| 226 |
"""Retrieve relevant document chunks for a query"""
|
| 227 |
try:
|
| 228 |
-
if not self.collection or not self.embedding_model:
|
| 229 |
return []
|
| 230 |
|
| 231 |
# Generate query embedding
|
|
@@ -254,7 +257,7 @@ class OncoLifeAssistant:
|
|
| 254 |
return []
|
| 255 |
|
| 256 |
def _load_model(self, model_id, gpu_available):
|
| 257 |
-
"""Load the BioMistral base model"""
|
| 258 |
try:
|
| 259 |
print("π Loading BioMistral base model...")
|
| 260 |
|
|
@@ -275,14 +278,16 @@ class OncoLifeAssistant:
|
|
| 275 |
trust_remote_code=True
|
| 276 |
)
|
| 277 |
|
| 278 |
-
# Load the model
|
| 279 |
print(f"π¦ Loading model: {model_id}")
|
| 280 |
self.model = MistralForCausalLM.from_pretrained(
|
| 281 |
model_id,
|
| 282 |
trust_remote_code=True,
|
| 283 |
device_map="auto",
|
| 284 |
torch_dtype=dtype,
|
| 285 |
-
low_cpu_mem_usage=True
|
|
|
|
|
|
|
| 286 |
)
|
| 287 |
|
| 288 |
# Add pad token if not present
|
|
@@ -297,7 +302,7 @@ class OncoLifeAssistant:
|
|
| 297 |
self.tokenizer = None
|
| 298 |
|
| 299 |
def generate_oncolife_response(self, user_input, conversation_history):
|
| 300 |
-
"""Generate response using OncoLife instructions and RAG"""
|
| 301 |
try:
|
| 302 |
if self.model is None or self.tokenizer is None:
|
| 303 |
return """β **Model Loading Error**
|
|
@@ -311,15 +316,17 @@ Please check the Space logs for details."""
|
|
| 311 |
|
| 312 |
print(f"π Generating OncoLife response for: {user_input}")
|
| 313 |
|
| 314 |
-
# Retrieve relevant documents using RAG
|
| 315 |
-
relevant_docs = self._retrieve_relevant_documents(user_input, top_k=3)
|
| 316 |
-
|
| 317 |
-
# Format retrieved documents
|
| 318 |
context_text = ""
|
| 319 |
-
if
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
|
| 324 |
# Create prompt using the loaded instructions and retrieved context
|
| 325 |
system_prompt = f"""You are the OncoLife Symptom & Triage Assistant. Follow these instructions exactly:
|
|
@@ -426,7 +433,7 @@ Please try a simpler question or check the logs for more details."""
|
|
| 426 |
"assistant": assistant_msg
|
| 427 |
})
|
| 428 |
|
| 429 |
-
# Generate response using OncoLife instructions and RAG
|
| 430 |
response = self.generate_oncolife_response(message, conversation_history)
|
| 431 |
|
| 432 |
return response
|
|
|
|
| 4 |
A medical chatbot that performs both symptom assessment and clinical triage for chemotherapy patients.
|
| 5 |
Updated: Using BioMistral-7B base model for medical conversations.
|
| 6 |
REBUILD: Simplified to use only base model, no adapters.
|
| 7 |
+
RAG: Added document retrieval capabilities for PDFs and other reference materials (optional).
|
| 8 |
"""
|
| 9 |
|
| 10 |
import gradio as gr
|
|
|
|
| 15 |
import torch
|
| 16 |
from spaces import GPU
|
| 17 |
|
| 18 |
+
# RAG imports (optional)
|
| 19 |
+
try:
|
| 20 |
+
import chromadb
|
| 21 |
+
from sentence_transformers import SentenceTransformer
|
| 22 |
+
import PyPDF2
|
| 23 |
+
import pdfplumber
|
| 24 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 25 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 26 |
+
import fitz # PyMuPDF for better PDF handling
|
| 27 |
+
RAG_AVAILABLE = True
|
| 28 |
+
except ImportError:
|
| 29 |
+
print("β οΈ RAG libraries not available, running in instruction-only mode")
|
| 30 |
+
RAG_AVAILABLE = False
|
| 31 |
|
| 32 |
# Force GPU detection for HF Spaces
|
| 33 |
@GPU
|
|
|
|
| 56 |
# Load the OncoLife instructions
|
| 57 |
self._load_instructions()
|
| 58 |
|
| 59 |
+
# Initialize RAG system (optional)
|
| 60 |
+
self.rag_enabled = False
|
| 61 |
+
if RAG_AVAILABLE:
|
| 62 |
+
try:
|
| 63 |
+
self._initialize_rag()
|
| 64 |
+
self.rag_enabled = True
|
| 65 |
+
print("β
RAG system initialized successfully")
|
| 66 |
+
except Exception as e:
|
| 67 |
+
print(f"β οΈ RAG initialization failed: {e}")
|
| 68 |
+
print("π Continuing with instruction-only mode")
|
| 69 |
+
else:
|
| 70 |
+
print("π Running in instruction-only mode (no RAG)")
|
| 71 |
|
| 72 |
def _load_instructions(self):
|
| 73 |
"""Load the OncoLife instructions from the text file"""
|
|
|
|
| 85 |
self.instructions = ""
|
| 86 |
|
| 87 |
def _initialize_rag(self):
|
| 88 |
+
"""Initialize the RAG system with document embeddings (lightweight version)"""
|
| 89 |
try:
|
| 90 |
+
print("π Initializing lightweight RAG system...")
|
| 91 |
|
| 92 |
+
# Use a smaller embedding model
|
| 93 |
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 94 |
print("β
Loaded embedding model")
|
| 95 |
|
| 96 |
+
# Initialize ChromaDB with persistence disabled for memory efficiency
|
| 97 |
self.chroma_client = chromadb.Client()
|
| 98 |
self.collection = self.chroma_client.create_collection(
|
| 99 |
name="oncolife_documents",
|
|
|
|
| 101 |
)
|
| 102 |
print("β
Initialized ChromaDB collection")
|
| 103 |
|
| 104 |
+
# Load and process documents (limited to essential files)
|
| 105 |
+
self._load_documents_lightweight()
|
| 106 |
|
| 107 |
except Exception as e:
|
| 108 |
print(f"β Error initializing RAG: {e}")
|
| 109 |
self.embedding_model = None
|
| 110 |
self.collection = None
|
| 111 |
+
raise e
|
| 112 |
|
| 113 |
+
def _load_documents_lightweight(self):
|
| 114 |
+
"""Load only essential documents to save memory"""
|
| 115 |
try:
|
| 116 |
docs_path = Path(__file__).parent / "guideline-docs"
|
| 117 |
+
print(f"π Loading essential documents from: {docs_path}")
|
| 118 |
|
| 119 |
if not docs_path.exists():
|
| 120 |
print("β οΈ guideline-docs directory not found")
|
|
|
|
| 122 |
|
| 123 |
# Text splitter for chunking documents
|
| 124 |
text_splitter = RecursiveCharacterTextSplitter(
|
| 125 |
+
chunk_size=500, # Smaller chunks to save memory
|
| 126 |
+
chunk_overlap=100,
|
| 127 |
separators=["\n\n", "\n", ". ", " ", ""]
|
| 128 |
)
|
| 129 |
|
| 130 |
documents_loaded = 0
|
| 131 |
|
| 132 |
+
# Only process JSON files (lightweight)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
for json_file in docs_path.glob("*.json"):
|
| 134 |
try:
|
| 135 |
print(f"π Processing JSON: {json_file.name}")
|
|
|
|
| 144 |
except Exception as e:
|
| 145 |
print(f"β Error processing {json_file.name}: {e}")
|
| 146 |
|
| 147 |
+
# Process text files (lightweight)
|
| 148 |
for txt_file in docs_path.glob("*.txt"):
|
| 149 |
try:
|
| 150 |
print(f"π Processing TXT: {txt_file.name}")
|
|
|
|
| 225 |
except Exception as e:
|
| 226 |
print(f"β Error adding chunks to database: {e}")
|
| 227 |
|
| 228 |
+
def _retrieve_relevant_documents(self, query, top_k=3):
|
| 229 |
"""Retrieve relevant document chunks for a query"""
|
| 230 |
try:
|
| 231 |
+
if not self.collection or not self.embedding_model or not self.rag_enabled:
|
| 232 |
return []
|
| 233 |
|
| 234 |
# Generate query embedding
|
|
|
|
| 257 |
return []
|
| 258 |
|
| 259 |
def _load_model(self, model_id, gpu_available):
|
| 260 |
+
"""Load the BioMistral base model with memory optimization"""
|
| 261 |
try:
|
| 262 |
print("π Loading BioMistral base model...")
|
| 263 |
|
|
|
|
| 278 |
trust_remote_code=True
|
| 279 |
)
|
| 280 |
|
| 281 |
+
# Load the model with memory optimization
|
| 282 |
print(f"π¦ Loading model: {model_id}")
|
| 283 |
self.model = MistralForCausalLM.from_pretrained(
|
| 284 |
model_id,
|
| 285 |
trust_remote_code=True,
|
| 286 |
device_map="auto",
|
| 287 |
torch_dtype=dtype,
|
| 288 |
+
low_cpu_mem_usage=True,
|
| 289 |
+
# Add memory optimization
|
| 290 |
+
max_memory={0: "8GB", "cpu": "16GB"} if gpu_available else {"cpu": "8GB"}
|
| 291 |
)
|
| 292 |
|
| 293 |
# Add pad token if not present
|
|
|
|
| 302 |
self.tokenizer = None
|
| 303 |
|
| 304 |
def generate_oncolife_response(self, user_input, conversation_history):
|
| 305 |
+
"""Generate response using OncoLife instructions and optional RAG"""
|
| 306 |
try:
|
| 307 |
if self.model is None or self.tokenizer is None:
|
| 308 |
return """β **Model Loading Error**
|
|
|
|
| 316 |
|
| 317 |
print(f"π Generating OncoLife response for: {user_input}")
|
| 318 |
|
| 319 |
+
# Retrieve relevant documents using RAG (if available)
|
|
|
|
|
|
|
|
|
|
| 320 |
context_text = ""
|
| 321 |
+
if self.rag_enabled:
|
| 322 |
+
try:
|
| 323 |
+
relevant_docs = self._retrieve_relevant_documents(user_input, top_k=2)
|
| 324 |
+
if relevant_docs:
|
| 325 |
+
context_text = "\n\n**Relevant Reference Information:**\n"
|
| 326 |
+
for i, doc in enumerate(relevant_docs):
|
| 327 |
+
context_text += f"\n--- Source: {doc['source']} ---\n{doc['content'][:300]}...\n"
|
| 328 |
+
except Exception as e:
|
| 329 |
+
print(f"β οΈ RAG retrieval failed: {e}")
|
| 330 |
|
| 331 |
# Create prompt using the loaded instructions and retrieved context
|
| 332 |
system_prompt = f"""You are the OncoLife Symptom & Triage Assistant. Follow these instructions exactly:
|
|
|
|
| 433 |
"assistant": assistant_msg
|
| 434 |
})
|
| 435 |
|
| 436 |
+
# Generate response using OncoLife instructions and optional RAG
|
| 437 |
response = self.generate_oncolife_response(message, conversation_history)
|
| 438 |
|
| 439 |
return response
|
requirements.txt
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
-
# Medical Chatbot HF Space Requirements
|
| 2 |
-
|
| 3 |
# Web framework
|
| 4 |
gradio==4.44.0
|
| 5 |
|
|
@@ -9,18 +7,10 @@ transformers==4.36.2
|
|
| 9 |
accelerate==0.25.0
|
| 10 |
|
| 11 |
# HF Spaces GPU support
|
| 12 |
-
spaces>=0.1.0
|
| 13 |
-
|
| 14 |
-
# Basic utilities
|
| 15 |
-
numpy>=1.21.0,<2.0.0
|
| 16 |
-
requests>=2.28.0
|
| 17 |
-
|
| 18 |
-
# Additional dependencies for better device handling
|
| 19 |
safetensors==0.4.1
|
| 20 |
tokenizers>=0.15.0
|
| 21 |
|
| 22 |
-
# RAG implementation
|
| 23 |
-
bitsandbytes==0.41.3
|
| 24 |
sentence-transformers==2.2.2
|
| 25 |
chromadb==0.4.22
|
| 26 |
pypdf2==3.0.1
|
|
|
|
|
|
|
|
|
|
| 1 |
# Web framework
|
| 2 |
gradio==4.44.0
|
| 3 |
|
|
|
|
| 7 |
accelerate==0.25.0
|
| 8 |
|
| 9 |
# HF Spaces GPU support
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
safetensors==0.4.1
|
| 11 |
tokenizers>=0.15.0
|
| 12 |
|
| 13 |
+
# RAG implementation (optional - will fallback gracefully if not available)
|
|
|
|
| 14 |
sentence-transformers==2.2.2
|
| 15 |
chromadb==0.4.22
|
| 16 |
pypdf2==3.0.1
|