Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,10 @@
|
|
| 1 |
import torch
|
| 2 |
import torchaudio
|
| 3 |
from einops import rearrange
|
| 4 |
-
|
| 5 |
import gradio as gr
|
| 6 |
import spaces
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# Importing the model-related functions
|
| 9 |
from stable_audio_tools import get_pretrained_model
|
|
@@ -13,9 +14,14 @@ from stable_audio_tools.inference.generation import generate_diffusion_cond
|
|
| 13 |
@spaces.GPU(duration=120) # Allocate GPU only when this function is called
|
| 14 |
def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
|
| 15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Download and set up the model
|
| 18 |
-
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
|
| 19 |
sample_rate = model_config["sample_rate"]
|
| 20 |
sample_size = model_config["sample_size"]
|
| 21 |
|
|
@@ -46,12 +52,14 @@ def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
|
|
| 46 |
|
| 47 |
# Peak normalize, clip, convert to int16
|
| 48 |
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
| 49 |
-
|
|
|
|
|
|
|
| 50 |
# Save to file
|
| 51 |
-
torchaudio.save(
|
| 52 |
|
| 53 |
# Return the path to the generated audio file
|
| 54 |
-
return
|
| 55 |
|
| 56 |
# Setting up the Gradio Interface
|
| 57 |
interface = gr.Interface(
|
|
|
|
| 1 |
import torch
|
| 2 |
import torchaudio
|
| 3 |
from einops import rearrange
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import spaces
|
| 6 |
+
import os
|
| 7 |
+
import uuid
|
| 8 |
|
| 9 |
# Importing the model-related functions
|
| 10 |
from stable_audio_tools import get_pretrained_model
|
|
|
|
| 14 |
@spaces.GPU(duration=120) # Allocate GPU only when this function is called
|
| 15 |
def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
|
| 16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
+
|
| 18 |
+
# Fetch the Hugging Face token from the environment variable
|
| 19 |
+
hf_token = os.getenv('HF_TOKEN')
|
| 20 |
+
if not hf_token:
|
| 21 |
+
raise EnvironmentError("HF_TOKEN environment variable not set")
|
| 22 |
|
| 23 |
# Download and set up the model
|
| 24 |
+
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0", use_auth_token=hf_token)
|
| 25 |
sample_rate = model_config["sample_rate"]
|
| 26 |
sample_size = model_config["sample_size"]
|
| 27 |
|
|
|
|
| 52 |
|
| 53 |
# Peak normalize, clip, convert to int16
|
| 54 |
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
| 55 |
+
|
| 56 |
+
# Generate a unique filename for the output
|
| 57 |
+
unique_filename = f"output_{uuid.uuid4().hex}.wav"
|
| 58 |
# Save to file
|
| 59 |
+
torchaudio.save(unique_filename, output, sample_rate)
|
| 60 |
|
| 61 |
# Return the path to the generated audio file
|
| 62 |
+
return unique_filename
|
| 63 |
|
| 64 |
# Setting up the Gradio Interface
|
| 65 |
interface = gr.Interface(
|