Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,104 +5,184 @@ from PIL import Image
|
|
| 5 |
import os
|
| 6 |
import tempfile
|
| 7 |
|
| 8 |
-
# Função auxiliar para salvar imagem temporariamente e retornar o caminho
|
| 9 |
def save_temp_image(img):
|
| 10 |
temp_dir = tempfile.mkdtemp()
|
| 11 |
img_path = os.path.join(temp_dir, "input_image.png")
|
| 12 |
img.save(img_path)
|
| 13 |
return img_path, temp_dir
|
| 14 |
|
| 15 |
-
# Função para executar o OCR via linha de comando
|
| 16 |
def ocr_function_cli(img, lang_name):
|
| 17 |
img_path, temp_dir = save_temp_image(img)
|
| 18 |
-
|
| 19 |
-
# Substitua 'surya_ocr' pelo comando correto no seu sistema
|
| 20 |
command = f"surya_ocr {img_path} --langs {lang_name} --images --results_dir {temp_dir}"
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
subprocess.
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
result_img_path = os.path.join(temp_dir, "image_with_text.png")
|
| 27 |
-
result_text_path = os.path.join(temp_dir, "results.json")
|
| 28 |
-
|
| 29 |
-
# Carregar a imagem resultante
|
| 30 |
if os.path.exists(result_img_path):
|
| 31 |
result_img = Image.open(result_img_path)
|
| 32 |
else:
|
| 33 |
-
result_img = img
|
| 34 |
-
|
| 35 |
-
# Carregar o texto resultante
|
| 36 |
if os.path.exists(result_text_path):
|
| 37 |
-
with open(result_text_path, "r") as file:
|
| 38 |
result_text = json.load(file)
|
| 39 |
-
|
| 40 |
-
text_output = "\n".join([str(page) for page in result_text.values()])
|
| 41 |
else:
|
| 42 |
text_output = "No text detected"
|
| 43 |
-
|
| 44 |
-
# Limpeza
|
| 45 |
-
os.remove(img_path) # Remove a imagem temporária
|
| 46 |
-
# opcional: remover diretório temporário e seus conteúdos, se necessário
|
| 47 |
-
|
| 48 |
return result_img, text_output
|
| 49 |
|
| 50 |
-
# Função para detecção de linhas de texto via linha de comando
|
| 51 |
def text_line_detection_function_cli(img):
|
| 52 |
img_path, temp_dir = save_temp_image(img)
|
| 53 |
-
|
| 54 |
-
# Substitua 'surya_detect' pelo comando correto no seu sistema
|
| 55 |
command = f"surya_detect {img_path} --images --results_dir {temp_dir}"
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
subprocess.
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
result_img_path = os.path.join(temp_dir, "image_with_lines.png")
|
| 62 |
-
result_json_path = os.path.join(temp_dir, "results.json")
|
| 63 |
-
|
| 64 |
-
# Carregar a imagem resultante
|
| 65 |
if os.path.exists(result_img_path):
|
| 66 |
result_img = Image.open(result_img_path)
|
| 67 |
else:
|
| 68 |
-
result_img = img
|
| 69 |
-
|
| 70 |
-
# Carregar os resultados JSON
|
| 71 |
if os.path.exists(result_json_path):
|
| 72 |
-
with open(result_json_path, "r") as file:
|
| 73 |
result_json = json.load(file)
|
| 74 |
else:
|
| 75 |
result_json = {"error": "No detection results found"}
|
| 76 |
-
|
| 77 |
-
# Limpeza
|
| 78 |
-
os.remove(img_path) # Remove a imagem temporária
|
| 79 |
-
# opcional: remover diretório temporário e seus conteúdos, se necessário
|
| 80 |
-
|
| 81 |
return result_img, result_json
|
| 82 |
|
| 83 |
-
# Interface Gradio
|
| 84 |
with gr.Blocks() as app:
|
| 85 |
-
gr.Markdown("# Surya OCR
|
|
|
|
| 86 |
with gr.Tab("OCR"):
|
| 87 |
with gr.Column():
|
| 88 |
-
ocr_input_image = gr.Image(label="
|
| 89 |
-
ocr_language_selector = gr.Dropdown(
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
with gr.Column():
|
| 92 |
-
ocr_output_image = gr.Image(label="
|
| 93 |
-
ocr_text_output = gr.TextArea(label="
|
| 94 |
|
| 95 |
-
ocr_run_button.click(
|
|
|
|
|
|
|
| 96 |
|
| 97 |
-
with gr.Tab("
|
| 98 |
with gr.Column():
|
| 99 |
-
detection_input_image = gr.Image(label="
|
| 100 |
-
detection_run_button = gr.Button("
|
|
|
|
| 101 |
with gr.Column():
|
| 102 |
-
detection_output_image = gr.Image(label="
|
| 103 |
-
detection_json_output = gr.JSON(label="
|
| 104 |
|
| 105 |
-
detection_run_button.click(
|
|
|
|
|
|
|
| 106 |
|
| 107 |
if __name__ == "__main__":
|
| 108 |
-
app.launch()
|
|
|
|
| 5 |
import os
|
| 6 |
import tempfile
|
| 7 |
|
|
|
|
| 8 |
def save_temp_image(img):
|
| 9 |
temp_dir = tempfile.mkdtemp()
|
| 10 |
img_path = os.path.join(temp_dir, "input_image.png")
|
| 11 |
img.save(img_path)
|
| 12 |
return img_path, temp_dir
|
| 13 |
|
|
|
|
| 14 |
def ocr_function_cli(img, lang_name):
|
| 15 |
img_path, temp_dir = save_temp_image(img)
|
|
|
|
|
|
|
| 16 |
command = f"surya_ocr {img_path} --langs {lang_name} --images --results_dir {temp_dir}"
|
| 17 |
+
try:
|
| 18 |
+
subprocess.run(command, shell=True, check=True, encoding='utf-8')
|
| 19 |
+
except subprocess.CalledProcessError as e:
|
| 20 |
+
print(f"OCR command failed: {e.output}")
|
| 21 |
+
return img, "OCR failed"
|
| 22 |
+
result_img_path = os.path.join(temp_dir, "image_with_text.png")
|
| 23 |
+
result_text_path = os.path.join(temp_dir, "results.json")
|
|
|
|
|
|
|
| 24 |
if os.path.exists(result_img_path):
|
| 25 |
result_img = Image.open(result_img_path)
|
| 26 |
else:
|
| 27 |
+
result_img = img
|
|
|
|
|
|
|
| 28 |
if os.path.exists(result_text_path):
|
| 29 |
+
with open(result_text_path, "r", encoding='utf-8') as file:
|
| 30 |
result_text = json.load(file)
|
| 31 |
+
text_output = "\n".join([str(page) for page in result_text.values()])
|
|
|
|
| 32 |
else:
|
| 33 |
text_output = "No text detected"
|
| 34 |
+
os.remove(img_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
return result_img, text_output
|
| 36 |
|
|
|
|
| 37 |
def text_line_detection_function_cli(img):
|
| 38 |
img_path, temp_dir = save_temp_image(img)
|
|
|
|
|
|
|
| 39 |
command = f"surya_detect {img_path} --images --results_dir {temp_dir}"
|
| 40 |
+
try:
|
| 41 |
+
subprocess.run(command, shell=True, check=True, encoding='utf-8')
|
| 42 |
+
except subprocess.CalledProcessError as e:
|
| 43 |
+
print(f"Text line detection command failed: {e.output}")
|
| 44 |
+
return img, {"error": "Detection failed"}
|
| 45 |
+
result_img_path = os.path.join(temp_dir, "image_with_lines.png")
|
| 46 |
+
result_json_path = os.path.join(temp_dir, "results.json")
|
|
|
|
|
|
|
| 47 |
if os.path.exists(result_img_path):
|
| 48 |
result_img = Image.open(result_img_path)
|
| 49 |
else:
|
| 50 |
+
result_img = img
|
|
|
|
|
|
|
| 51 |
if os.path.exists(result_json_path):
|
| 52 |
+
with open(result_json_path, "r", encoding='utf-8') as file:
|
| 53 |
result_json = json.load(file)
|
| 54 |
else:
|
| 55 |
result_json = {"error": "No detection results found"}
|
| 56 |
+
os.remove(img_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
return result_img, result_json
|
| 58 |
|
|
|
|
| 59 |
with gr.Blocks() as app:
|
| 60 |
+
gr.Markdown("# Surya OCR and Text Line Detection via CLI")
|
| 61 |
+
|
| 62 |
with gr.Tab("OCR"):
|
| 63 |
with gr.Column():
|
| 64 |
+
ocr_input_image = gr.Image(label="Input Image for OCR", type="pil")
|
| 65 |
+
ocr_language_selector = gr.Dropdown(
|
| 66 |
+
label="Select Language for OCR",
|
| 67 |
+
choices=[
|
| 68 |
+
"Afrikaans",
|
| 69 |
+
"Amharic",
|
| 70 |
+
"Arabic",
|
| 71 |
+
"Assamese",
|
| 72 |
+
"Azerbaijani",
|
| 73 |
+
"Belarusian",
|
| 74 |
+
"Bulgarian",
|
| 75 |
+
"Bengali",
|
| 76 |
+
"Breton",
|
| 77 |
+
"Bosnian",
|
| 78 |
+
"Catalan",
|
| 79 |
+
"Czech",
|
| 80 |
+
"Welsh",
|
| 81 |
+
"Danish",
|
| 82 |
+
"German",
|
| 83 |
+
"Greek",
|
| 84 |
+
"English",
|
| 85 |
+
"Esperanto",
|
| 86 |
+
"Spanish",
|
| 87 |
+
"Estonian",
|
| 88 |
+
"Basque",
|
| 89 |
+
"Persian",
|
| 90 |
+
"Finnish",
|
| 91 |
+
"French",
|
| 92 |
+
"Western Frisian",
|
| 93 |
+
"Irish",
|
| 94 |
+
"Scottish Gaelic",
|
| 95 |
+
"Galician",
|
| 96 |
+
"Gujarati",
|
| 97 |
+
"Hausa",
|
| 98 |
+
"Hebrew",
|
| 99 |
+
"Hindi",
|
| 100 |
+
"Croatian",
|
| 101 |
+
"Hungarian",
|
| 102 |
+
"Armenian",
|
| 103 |
+
"Indonesian",
|
| 104 |
+
"Icelandic",
|
| 105 |
+
"Italian",
|
| 106 |
+
"Japanese",
|
| 107 |
+
"Javanese",
|
| 108 |
+
"Georgian",
|
| 109 |
+
"Kazakh",
|
| 110 |
+
"Khmer",
|
| 111 |
+
"Kannada",
|
| 112 |
+
"Korean",
|
| 113 |
+
"Kurdish",
|
| 114 |
+
"Kyrgyz",
|
| 115 |
+
"Latin",
|
| 116 |
+
"Lao",
|
| 117 |
+
"Lithuanian",
|
| 118 |
+
"Latvian",
|
| 119 |
+
"Malagasy",
|
| 120 |
+
"Macedonian",
|
| 121 |
+
"Malayalam",
|
| 122 |
+
"Mongolian",
|
| 123 |
+
"Marathi",
|
| 124 |
+
"Malay",
|
| 125 |
+
"Burmese",
|
| 126 |
+
"Nepali",
|
| 127 |
+
"Dutch",
|
| 128 |
+
"Norwegian",
|
| 129 |
+
"Oromo",
|
| 130 |
+
"Oriya",
|
| 131 |
+
"Punjabi",
|
| 132 |
+
"Polish",
|
| 133 |
+
"Pashto",
|
| 134 |
+
"Portuguese",
|
| 135 |
+
"Romanian",
|
| 136 |
+
"Russian",
|
| 137 |
+
"Sanskrit",
|
| 138 |
+
"Sindhi",
|
| 139 |
+
"Sinhala",
|
| 140 |
+
"Slovak",
|
| 141 |
+
"Slovenian",
|
| 142 |
+
"Somali",
|
| 143 |
+
"Albanian",
|
| 144 |
+
"Serbian",
|
| 145 |
+
"Sundanese",
|
| 146 |
+
"Swedish",
|
| 147 |
+
"Swahili",
|
| 148 |
+
"Tamil",
|
| 149 |
+
"Telugu",
|
| 150 |
+
"Thai",
|
| 151 |
+
"Tagalog",
|
| 152 |
+
"Turkish",
|
| 153 |
+
"Uyghur",
|
| 154 |
+
"Ukrainian",
|
| 155 |
+
"Urdu",
|
| 156 |
+
"Uzbek",
|
| 157 |
+
"Vietnamese",
|
| 158 |
+
"Xhosa",
|
| 159 |
+
"Yiddish",
|
| 160 |
+
"Chinese"
|
| 161 |
+
],
|
| 162 |
+
value="English"
|
| 163 |
+
)
|
| 164 |
+
ocr_run_button = gr.Button("Run OCR")
|
| 165 |
+
|
| 166 |
with gr.Column():
|
| 167 |
+
ocr_output_image = gr.Image(label="OCR Output Image", type="pil", interactive=False)
|
| 168 |
+
ocr_text_output = gr.TextArea(label="Recognized Text")
|
| 169 |
|
| 170 |
+
ocr_run_button.click(
|
| 171 |
+
fn=ocr_function_cli, inputs=[ocr_input_image, ocr_language_selector], outputs=[ocr_output_image, ocr_text_output]
|
| 172 |
+
)
|
| 173 |
|
| 174 |
+
with gr.Tab("Text Line Detection"):
|
| 175 |
with gr.Column():
|
| 176 |
+
detection_input_image = gr.Image(label="Input Image for Detection", type="pil")
|
| 177 |
+
detection_run_button = gr.Button("Run Text Line Detection")
|
| 178 |
+
|
| 179 |
with gr.Column():
|
| 180 |
+
detection_output_image = gr.Image(label="Detection Output Image", type="pil", interactive=False)
|
| 181 |
+
detection_json_output = gr.JSON(label="Detection JSON Output")
|
| 182 |
|
| 183 |
+
detection_run_button.click(
|
| 184 |
+
fn=text_line_detection_function_cli, inputs=detection_input_image, outputs=[detection_output_image, detection_json_output]
|
| 185 |
+
)
|
| 186 |
|
| 187 |
if __name__ == "__main__":
|
| 188 |
+
app.launch()
|