Spaces:
Sleeping
Sleeping
Commit
Β·
948bd8f
1
Parent(s):
e2116c0
updated model.py
Browse files
model.py
CHANGED
|
@@ -10,40 +10,39 @@ device = "cpu"
|
|
| 10 |
# Load tokenizer and model
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
| 12 |
|
| 13 |
-
# Ensure the tokenizer has a pad token set
|
| 14 |
if tokenizer.pad_token is None:
|
| 15 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 16 |
|
| 17 |
model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
MODEL_NAME,
|
| 19 |
token=HF_TOKEN,
|
| 20 |
-
torch_dtype=torch.float32,
|
| 21 |
trust_remote_code=True
|
| 22 |
).to(device)
|
| 23 |
|
| 24 |
def generate_code(prompt: str, max_tokens: int = 256):
|
| 25 |
-
|
|
|
|
| 26 |
|
| 27 |
inputs = tokenizer(
|
| 28 |
formatted_prompt,
|
| 29 |
return_tensors="pt",
|
| 30 |
-
padding=True,
|
| 31 |
truncation=True,
|
| 32 |
-
max_length=
|
| 33 |
).to(device)
|
| 34 |
|
| 35 |
output = model.generate(
|
| 36 |
**inputs,
|
| 37 |
max_new_tokens=max_tokens,
|
| 38 |
pad_token_id=tokenizer.pad_token_id,
|
| 39 |
-
do_sample=True,
|
| 40 |
-
top_p=0.
|
| 41 |
-
temperature=0.
|
| 42 |
)
|
| 43 |
|
| 44 |
generated_code = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 45 |
|
| 46 |
-
#
|
| 47 |
if generated_code.startswith(formatted_prompt):
|
| 48 |
generated_code = generated_code[len(formatted_prompt):]
|
| 49 |
|
|
|
|
| 10 |
# Load tokenizer and model
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
| 12 |
|
|
|
|
| 13 |
if tokenizer.pad_token is None:
|
| 14 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 15 |
|
| 16 |
model = AutoModelForCausalLM.from_pretrained(
|
| 17 |
MODEL_NAME,
|
| 18 |
token=HF_TOKEN,
|
| 19 |
+
torch_dtype=torch.float32,
|
| 20 |
trust_remote_code=True
|
| 21 |
).to(device)
|
| 22 |
|
| 23 |
def generate_code(prompt: str, max_tokens: int = 256):
|
| 24 |
+
# π **Improve Speed & Support Multi-language**
|
| 25 |
+
formatted_prompt = f"{prompt}\n### Code:\n" # Hint that code follows
|
| 26 |
|
| 27 |
inputs = tokenizer(
|
| 28 |
formatted_prompt,
|
| 29 |
return_tensors="pt",
|
|
|
|
| 30 |
truncation=True,
|
| 31 |
+
max_length=512 # β© Reduce max length to speed up processing
|
| 32 |
).to(device)
|
| 33 |
|
| 34 |
output = model.generate(
|
| 35 |
**inputs,
|
| 36 |
max_new_tokens=max_tokens,
|
| 37 |
pad_token_id=tokenizer.pad_token_id,
|
| 38 |
+
do_sample=True,
|
| 39 |
+
top_p=0.90, # π― Prioritize better predictions
|
| 40 |
+
temperature=0.6 # π₯ More deterministic output
|
| 41 |
)
|
| 42 |
|
| 43 |
generated_code = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 44 |
|
| 45 |
+
# Remove the input prompt from the output
|
| 46 |
if generated_code.startswith(formatted_prompt):
|
| 47 |
generated_code = generated_code[len(formatted_prompt):]
|
| 48 |
|