Spaces:
Runtime error
Runtime error
| import os | |
| import torch | |
| from fastapi import FastAPI, HTTPException | |
| from pydantic import BaseModel, Field | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig | |
| # Set a writable cache directory | |
| os.environ["HF_HOME"] = "/tmp/huggingface" | |
| os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface" | |
| # Model setup | |
| MODEL_NAME = "google/gemma-2b" # Smaller, CPU-friendly model | |
| DEVICE = "cpu" | |
| # 4-bit Quantization for CPU | |
| quantization_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_compute_dtype=torch.float16, | |
| bnb_4bit_use_double_quant=True | |
| ) | |
| # Load model & tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_NAME, | |
| quantization_config=quantization_config, | |
| device_map="cpu" | |
| ) | |
| # Set generation config | |
| model.generation_config = GenerationConfig.from_pretrained(MODEL_NAME) | |
| model.generation_config.pad_token_id = model.generation_config.eos_token_id | |
| # FastAPI app | |
| app = FastAPI() | |
| # Request payload | |
| class TextGenerationRequest(BaseModel): | |
| prompt: str | |
| max_tokens: int = Field(default=100, ge=1, le=512) # Prevent too large token requests | |
| async def generate_text(request: TextGenerationRequest): | |
| try: | |
| inputs = tokenizer(request.prompt, return_tensors="pt").to(DEVICE) | |
| outputs = model.generate(**inputs, max_new_tokens=request.max_tokens, do_sample=True) | |
| result = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return {"generated_text": result} | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=str(e)) | |