Spaces:
Sleeping
Sleeping
File size: 5,744 Bytes
791fde2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
#!/usr/bin/env python
"""
BallNet Demo App
"""
import os
import numpy as np
import trimesh
import pandas as pd
import tempfile
import gradio as gr
import matplotlib as mpl
from huggingface_hub import hf_hub_download
import onnxruntime as ort
model_dict = {
"BallNet": "asRobotics/ballnet",
}
vertices_dict = {}
faces_dict = {}
def_index_dict = {}
for name in model_dict.keys():
vertices_dict[name] = np.loadtxt(
f"assets/{name.lower().replace('net', '')}/surface_coordinate.txt", delimiter=","
)
faces_dict[name] = (
np.loadtxt(
f"assets/{name.lower().replace('net', '')}/surface_triangle.txt",
delimiter=",",
dtype=int,
)
- 1
)
def_index_dict[name] = np.loadtxt(
f"assets/{name.lower().replace('net', '')}/deform_node.txt", dtype=int
)
colormap = mpl.colormaps.get_cmap("viridis")
cmin = 0.0
cmax = 12.0
def load_model(model_name="ballnet"):
repo_id = f"asRobotics/{model_name}"
model_filename = "model.onnx"
model_path = hf_hub_download(repo_id=repo_id, filename=model_filename)
return ort.InferenceSession(model_path)
ort_dict = {}
for name, path in model_dict.items():
try:
ort_dict[name] = load_model(name)
except Exception as e:
print(f"Warning: Could not load model '{name}' from '{path}'. Error: {e}")
def make_double_sided(mesh: trimesh.Trimesh) -> trimesh.Trimesh:
faces_front = mesh.faces.copy()
vertices = mesh.vertices.copy()
faces_back = np.fliplr(faces_front) + len(vertices)
vertices_double = np.vstack([vertices, vertices])
faces_double = np.vstack([faces_front, faces_back])
if hasattr(mesh.visual, "vertex_colors") and mesh.visual.vertex_colors is not None:
colors = mesh.visual.vertex_colors.copy()
colors_double = np.vstack([colors, colors])
else:
colors_double = None
mesh_double = trimesh.Trimesh(
vertices=vertices_double,
faces=faces_double,
vertex_colors=colors_double,
process=False,
)
return mesh_double
def predict_from_motion(dx, dy, dz, rx, ry, rz, model_name):
motion = np.array(
[dx, dy, dz, rx / 180.0 * np.pi, ry / 180.0 * np.pi, rz / 180.0 * np.pi],
dtype=np.float32,
).reshape(1, -1)
assert motion.shape[1] == 6, "Motion must be 6D (x,y,z,rx,ry,rz)"
outputs = ort_dict[model_name].run(None, {"motion": motion})
force = np.array(outputs[0]).flatten()
nodes = np.array(outputs[1]).reshape(-1, 3)
df = pd.DataFrame(
force.reshape(1, -1),
columns=["Fx (N)", "Fy (N)", "Fz (N)", "Tx (Nmm)", "Ty (Nmm)", "Tz (Nmm)"],
)
df = df.style.format("{:.3f}")
delta_vertices = np.zeros_like(vertices_dict[model_name])
delta_vertices[def_index_dict[model_name] - 1] += nodes.reshape(-1, 3)
new_vertices = vertices_dict[model_name] + delta_vertices
rot_x_neg90 = np.array(
[
[1, 0, 0],
[0, 0, 1],
[0, -1, 0],
]
)
new_vertices = new_vertices @ rot_x_neg90.T
norm_dist = np.clip(np.linalg.norm(delta_vertices, axis=1), cmin, cmax)
colors = (colormap((norm_dist - cmin) / (cmax - cmin)) * 255).astype(np.uint8)
mesh = trimesh.Trimesh(
vertices=new_vertices,
faces=faces_dict[model_name],
vertex_colors=colors,
process=False,
)
mesh = make_double_sided(mesh)
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".glb")
mesh.export(tmp_file.name, file_type="glb")
return df, tmp_file.name
with gr.Blocks(title="BallNet Demo") as demo:
gr.Markdown("# 🖐️ BallNet Demo\n\n")
with gr.Row():
with gr.Column():
gr.Markdown("## Model")
model = gr.Dropdown(
choices=list(model_dict.keys()),
value=list(model_dict.keys())[0],
label="Select Model",
show_label=False,
interactive=False,
)
gr.Markdown("## Motion Inputs")
gr.Markdown("### Translation (mm)")
dx = gr.Slider(-10, 10, 0, step=0.1, label="Dx")
dy = gr.Slider(-10, 10, 0, step=0.1, label="Dy")
dz = gr.Slider(-3, 3, 0, step=0.1, label="Dz")
gr.Markdown("### Rotation (degrees)")
rx = gr.Slider(-30, 30, 0, step=0.5, label="Rx")
ry = gr.Slider(-30, 30, 0, step=0.5, label="Ry")
rz = gr.Slider(-30, 30, 0, step=0.5, label="Rz")
with gr.Column():
gr.Markdown("## Force Outputs")
output_force = gr.DataFrame(
headers=[
"Fx (N)",
"Fy (N)",
"Fz (N)",
"Tx (Nmm)",
"Ty (Nmm)",
"Tz (Nmm)",
],
label="Predicted Force",
show_label=False,
datatype=["number"] * 6,
row_count=(1, "fixed"),
interactive=False,
column_widths=["16%"] * 6,
)
gr.Markdown("## Mesh Outputs")
height = 500
output_mesh = gr.Model3D(
label="Mesh",
show_label=False,
height=height,
camera_position=[45, 60, 150],
)
inputs = [dx, dy, dz, rx, ry, rz, model]
for inp in inputs:
inp.change(
fn=predict_from_motion, inputs=inputs, outputs=[output_force, output_mesh]
)
demo.load(
fn=predict_from_motion, inputs=inputs, outputs=[output_force, output_mesh]
)
demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))
|