Spaces:
Running
Running
Commit
·
10c6208
1
Parent(s):
9760e23
changed.
Browse files
app.py
CHANGED
|
@@ -1,106 +1,113 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import faiss
|
| 4 |
-
import torch
|
| 5 |
import numpy as np
|
| 6 |
-
|
|
|
|
| 7 |
from sentence_transformers import SentenceTransformer
|
| 8 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
# Load Retrieval
|
| 12 |
-
#
|
| 13 |
-
print("Loading corpus and FAISS index...")
|
| 14 |
df = pd.read_csv("retrieval_corpus.csv")
|
| 15 |
index = faiss.read_index("faiss_index.bin")
|
| 16 |
|
| 17 |
-
|
|
|
|
|
|
|
| 18 |
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
# Load
|
| 22 |
-
#
|
| 23 |
-
model_id = "
|
| 24 |
|
| 25 |
-
print(f"Loading tokenizer and model: {model_id}")
|
| 26 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
prompt =
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
| 52 |
return prompt
|
| 53 |
|
| 54 |
-
def
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
#
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import faiss
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 7 |
from sentence_transformers import SentenceTransformer
|
|
|
|
| 8 |
|
| 9 |
+
# ----------------------
|
| 10 |
+
# Load Retrieval Corpus & FAISS Index
|
| 11 |
+
# ----------------------
|
|
|
|
| 12 |
df = pd.read_csv("retrieval_corpus.csv")
|
| 13 |
index = faiss.read_index("faiss_index.bin")
|
| 14 |
|
| 15 |
+
# ----------------------
|
| 16 |
+
# Load Embedding Model
|
| 17 |
+
# ----------------------
|
| 18 |
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 19 |
|
| 20 |
+
# ----------------------
|
| 21 |
+
# Load Lightweight HuggingFace Model (FLAN-T5-Base)
|
| 22 |
+
# ----------------------
|
| 23 |
+
model_id = "google/flan-t5-base"
|
| 24 |
|
|
|
|
| 25 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 26 |
+
generation_model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
| 27 |
+
|
| 28 |
+
# ----------------------
|
| 29 |
+
# RAG Functions
|
| 30 |
+
# ----------------------
|
| 31 |
+
|
| 32 |
+
def retrieve_top_k(query, k=5):
|
| 33 |
+
query_embedding = embedding_model.encode([query]).astype("float32")
|
| 34 |
+
D, I = index.search(query_embedding, k)
|
| 35 |
+
results = df.iloc[I[0]].copy()
|
| 36 |
+
results["score"] = D[0]
|
| 37 |
+
return results
|
| 38 |
+
|
| 39 |
+
def build_prompt(query, retrieved_docs):
|
| 40 |
+
context_text = "\n".join([
|
| 41 |
+
f"- {doc['text']}" for _, doc in retrieved_docs.iterrows()
|
| 42 |
+
])
|
| 43 |
+
|
| 44 |
+
prompt = f"""You are a medical assistant trained on clinical reasoning data.
|
| 45 |
+
Given the following patient query and related clinical observations, generate a diagnostic explanation.
|
| 46 |
+
|
| 47 |
+
Patient Query:
|
| 48 |
+
{query}
|
| 49 |
+
|
| 50 |
+
Clinical Context:
|
| 51 |
+
{context_text}
|
| 52 |
+
|
| 53 |
+
Diagnostic Explanation:"""
|
| 54 |
return prompt
|
| 55 |
|
| 56 |
+
def generate_local_answer(prompt, max_new_tokens=256):
|
| 57 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids # CPU only
|
| 58 |
+
output = generation_model.generate(
|
| 59 |
+
input_ids=input_ids,
|
| 60 |
+
max_new_tokens=max_new_tokens,
|
| 61 |
+
temperature=0.7,
|
| 62 |
+
do_sample=True,
|
| 63 |
+
top_k=50,
|
| 64 |
+
top_p=0.95,
|
| 65 |
+
)
|
| 66 |
+
decoded = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 67 |
+
return decoded.strip()
|
| 68 |
+
|
| 69 |
+
# ----------------------
|
| 70 |
+
# Gradio Interface
|
| 71 |
+
# ----------------------
|
| 72 |
+
|
| 73 |
+
def rag_chat(query):
|
| 74 |
+
top_docs = retrieve_top_k(query, k=5)
|
| 75 |
+
prompt = build_prompt(query, top_docs)
|
| 76 |
+
answer = generate_local_answer(prompt)
|
| 77 |
+
return answer
|
| 78 |
+
|
| 79 |
+
# Optional: basic CSS to enhance layout
|
| 80 |
+
custom_css = """
|
| 81 |
+
textarea, .input_textbox {
|
| 82 |
+
font-size: 1.05rem !important;
|
| 83 |
+
}
|
| 84 |
+
.output-markdown {
|
| 85 |
+
font-size: 1.08rem !important;
|
| 86 |
+
}
|
| 87 |
+
"""
|
| 88 |
+
|
| 89 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Default(primary_hue="blue")) as demo:
|
| 90 |
+
gr.Markdown("""
|
| 91 |
+
# 🩺 RAGnosis — Clinical Reasoning Assistant
|
| 92 |
+
|
| 93 |
+
Enter a natural-language query describing your patient's condition to receive an AI-generated diagnostic reasoning response.
|
| 94 |
+
|
| 95 |
+
**Example:**
|
| 96 |
+
*Patient has shortness of breath, fatigue, and leg swelling.*
|
| 97 |
+
""")
|
| 98 |
+
|
| 99 |
+
with gr.Row():
|
| 100 |
+
with gr.Column():
|
| 101 |
+
query_input = gr.Textbox(
|
| 102 |
+
lines=4,
|
| 103 |
+
label="📝 Patient Query",
|
| 104 |
+
placeholder="Enter patient symptoms or findings..."
|
| 105 |
+
)
|
| 106 |
+
submit_btn = gr.Button("🔍 Generate Diagnosis")
|
| 107 |
+
|
| 108 |
+
with gr.Column():
|
| 109 |
+
output = gr.Markdown(label="🧠 Diagnostic Reasoning")
|
| 110 |
+
|
| 111 |
+
submit_btn.click(fn=rag_chat, inputs=query_input, outputs=output)
|
| 112 |
+
|
| 113 |
+
demo.launch(share=True)
|