Spaces:
Sleeping
Sleeping
Commit
·
1a492a3
1
Parent(s):
d7955f6
Removed chromadb directory from tracking
Browse files- .gitignore +1 -0
- app.py +120 -10
- chromadb/chroma.sqlite3 → car-manuals/manual_Astor.pdf +2 -2
- chromadb/e820442b-1d6c-4933-8a2c-981f60377458/data_level0.bin → car-manuals/manual_Tiago.pdf +2 -2
- chromadb/e820442b-1d6c-4933-8a2c-981f60377458/header.bin +0 -3
- chromadb/e820442b-1d6c-4933-8a2c-981f60377458/length.bin +0 -3
- chromadb/e820442b-1d6c-4933-8a2c-981f60377458/link_lists.bin +0 -0
- requirements.txt +0 -2
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
chromadb/
|
app.py
CHANGED
|
@@ -13,7 +13,7 @@ from transformers import AutoTokenizer
|
|
| 13 |
from rerankers import Reranker
|
| 14 |
from transformers import GPT2TokenizerFast
|
| 15 |
from groq import Groq
|
| 16 |
-
|
| 17 |
import gradio as gr
|
| 18 |
|
| 19 |
# Retrieve the API key from environment variables (Hugging Face Secrets)
|
|
@@ -23,7 +23,22 @@ groq_api_key = os.environ.get('GROQ_API_KEY')
|
|
| 23 |
chat_client = Groq(api_key=groq_api_key)
|
| 24 |
model = "llama-3.2-90b-text-preview"
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
def preprocess_text(text):
|
| 28 |
# ... (same as your original function)
|
| 29 |
text = re.sub(r'\s+', ' ', text)
|
|
@@ -53,6 +68,49 @@ def call_Llama_api(query, context):
|
|
| 53 |
response = chat_completion.choices[0].message.content
|
| 54 |
return response
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
def is_car_model_available(query, available_models):
|
| 57 |
# ... (same as your original function)
|
| 58 |
for model in available_models:
|
|
@@ -60,6 +118,16 @@ def is_car_model_available(query, available_models):
|
|
| 60 |
return model
|
| 61 |
return None
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
def colbert_rerank(query=None, chunks=None):
|
| 64 |
# ... (same as your original function)
|
| 65 |
d = ranker.rank(query=query, docs=chunks)
|
|
@@ -111,27 +179,68 @@ def initialize():
|
|
| 111 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 112 |
print(f"Using device: {device}")
|
| 113 |
|
|
|
|
|
|
|
| 114 |
# Initialize embedding model
|
| 115 |
embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(
|
| 116 |
model_name="all-MiniLM-L12-v2", device=device
|
| 117 |
)
|
| 118 |
|
| 119 |
-
# Load the persisted ChromaDB collection
|
| 120 |
client = PersistentClient(path="./chromadb")
|
| 121 |
|
| 122 |
# Get the collection
|
| 123 |
collection_name = "car_manuals5"
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
# Set available car models
|
| 130 |
-
available_car_models = ['TIAGO', 'Astor']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
# Initialize the ranker
|
| 133 |
ranker = Reranker("answerdotai/answerai-colbert-small-v1", model_type='colbert')
|
| 134 |
-
|
| 135 |
# Call initialize function
|
| 136 |
initialize()
|
| 137 |
|
|
@@ -145,4 +254,5 @@ iface = gr.Interface(
|
|
| 145 |
)
|
| 146 |
|
| 147 |
if __name__ == "__main__":
|
| 148 |
-
iface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
| 13 |
from rerankers import Reranker
|
| 14 |
from transformers import GPT2TokenizerFast
|
| 15 |
from groq import Groq
|
| 16 |
+
from chromadb import PersistentClient
|
| 17 |
import gradio as gr
|
| 18 |
|
| 19 |
# Retrieve the API key from environment variables (Hugging Face Secrets)
|
|
|
|
| 23 |
chat_client = Groq(api_key=groq_api_key)
|
| 24 |
model = "llama-3.2-90b-text-preview"
|
| 25 |
|
| 26 |
+
|
| 27 |
+
def parse_pdf(pdf_path):
|
| 28 |
+
|
| 29 |
+
texts = []
|
| 30 |
+
with pdfplumber.open(pdf_path) as pdf:
|
| 31 |
+
for page_num, page in enumerate(pdf.pages, start=1):
|
| 32 |
+
text = page.extract_text()
|
| 33 |
+
if text:
|
| 34 |
+
texts.append({
|
| 35 |
+
'text': text,
|
| 36 |
+
'metadata': {
|
| 37 |
+
'page_number': page_num
|
| 38 |
+
}
|
| 39 |
+
})
|
| 40 |
+
return texts
|
| 41 |
+
|
| 42 |
def preprocess_text(text):
|
| 43 |
# ... (same as your original function)
|
| 44 |
text = re.sub(r'\s+', ' ', text)
|
|
|
|
| 68 |
response = chat_completion.choices[0].message.content
|
| 69 |
return response
|
| 70 |
|
| 71 |
+
|
| 72 |
+
def chunk_texts(texts, max_tokens=500, overlap_tokens=50):
|
| 73 |
+
"""
|
| 74 |
+
Splits texts into chunks based on paragraphs with overlap to preserve context.
|
| 75 |
+
|
| 76 |
+
"""
|
| 77 |
+
chunks = []
|
| 78 |
+
for item in texts:
|
| 79 |
+
text = preprocess_text(item['text'])
|
| 80 |
+
if not text:
|
| 81 |
+
continue
|
| 82 |
+
metadata = item['metadata']
|
| 83 |
+
# Split text into paragraphs
|
| 84 |
+
paragraphs = text.split('\n\n')
|
| 85 |
+
current_chunk = ''
|
| 86 |
+
current_tokens = 0
|
| 87 |
+
for i, paragraph in enumerate(paragraphs):
|
| 88 |
+
paragraph = paragraph.strip()
|
| 89 |
+
if not paragraph:
|
| 90 |
+
continue
|
| 91 |
+
paragraph_tokens = len(tokenizer.encode(paragraph))
|
| 92 |
+
if current_tokens + paragraph_tokens <= max_tokens:
|
| 93 |
+
current_chunk += paragraph + '\n\n'
|
| 94 |
+
current_tokens += paragraph_tokens
|
| 95 |
+
else:
|
| 96 |
+
# Save the current chunk
|
| 97 |
+
chunk = {
|
| 98 |
+
'text': current_chunk.strip(),
|
| 99 |
+
'metadata': metadata
|
| 100 |
+
}
|
| 101 |
+
chunks.append(chunk)
|
| 102 |
+
# Start a new chunk with overlap
|
| 103 |
+
overlap_text = ' '.join(current_chunk.split()[-overlap_tokens:])
|
| 104 |
+
current_chunk = overlap_text + ' ' + paragraph + '\n\n'
|
| 105 |
+
current_tokens = len(tokenizer.encode(current_chunk))
|
| 106 |
+
if current_chunk:
|
| 107 |
+
chunk = {
|
| 108 |
+
'text': current_chunk.strip(),
|
| 109 |
+
'metadata': metadata
|
| 110 |
+
}
|
| 111 |
+
chunks.append(chunk)
|
| 112 |
+
return chunks
|
| 113 |
+
|
| 114 |
def is_car_model_available(query, available_models):
|
| 115 |
# ... (same as your original function)
|
| 116 |
for model in available_models:
|
|
|
|
| 118 |
return model
|
| 119 |
return None
|
| 120 |
|
| 121 |
+
def extract_car_model(pdf_filename):
|
| 122 |
+
|
| 123 |
+
base_name = os.path.basename(pdf_filename)
|
| 124 |
+
match = re.search(r'manual_(.+)\.pdf', base_name)
|
| 125 |
+
if match:
|
| 126 |
+
model_name = match.group(1).replace('_', ' ').title()
|
| 127 |
+
return model_name
|
| 128 |
+
else:
|
| 129 |
+
return 'Unknown Model'
|
| 130 |
+
|
| 131 |
def colbert_rerank(query=None, chunks=None):
|
| 132 |
# ... (same as your original function)
|
| 133 |
d = ranker.rank(query=query, docs=chunks)
|
|
|
|
| 179 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 180 |
print(f"Using device: {device}")
|
| 181 |
|
| 182 |
+
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2") # For token counting
|
| 183 |
+
|
| 184 |
# Initialize embedding model
|
| 185 |
embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(
|
| 186 |
model_name="all-MiniLM-L12-v2", device=device
|
| 187 |
)
|
| 188 |
|
|
|
|
| 189 |
client = PersistentClient(path="./chromadb")
|
| 190 |
|
| 191 |
# Get the collection
|
| 192 |
collection_name = "car_manuals5"
|
| 193 |
+
|
| 194 |
+
if collection_name in [col.name for col in client.list_collections()]:
|
| 195 |
+
collection = client.get_collection(
|
| 196 |
+
name=collection_name,
|
| 197 |
+
embedding_function=embedding_function
|
| 198 |
+
)
|
| 199 |
+
available_car_models = ['Tiago', 'Astor']
|
| 200 |
+
|
| 201 |
+
else:
|
| 202 |
+
collection = client.create_collection(
|
| 203 |
+
name=collection_name,
|
| 204 |
+
embedding_function=embedding_function
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
# collection = client.get_or_create_collection(
|
| 209 |
+
# name=collection_name,
|
| 210 |
+
# embedding_function=embedding_function
|
| 211 |
+
# )
|
| 212 |
|
| 213 |
# Set available car models
|
| 214 |
+
# available_car_models = ['TIAGO', 'Astor']
|
| 215 |
+
|
| 216 |
+
pdf_files = ['./car_manuals/manual_Tiago.pdf', './car_manuals/manual_Astor.pdf']
|
| 217 |
+
available_car_models = []
|
| 218 |
+
|
| 219 |
+
for pdf_file in pdf_files:
|
| 220 |
+
print(f"Parsing {pdf_file}...")
|
| 221 |
+
pdf_texts = parse_pdf(pdf_file)
|
| 222 |
+
car_model = extract_car_model(pdf_file)
|
| 223 |
+
available_car_models.append(car_model)
|
| 224 |
+
# Add car model to metadata
|
| 225 |
+
for item in pdf_texts:
|
| 226 |
+
item['metadata']['car_model'] = car_model
|
| 227 |
+
# Chunk texts using the refined strategy
|
| 228 |
+
chunks = chunk_texts(pdf_texts, max_tokens=500, overlap_tokens=50)
|
| 229 |
+
# Prepare data for ChromaDB
|
| 230 |
+
documents = [chunk['text'] for chunk in chunks]
|
| 231 |
+
metadatas = [chunk['metadata'] for chunk in chunks]
|
| 232 |
+
ids = [f"{car_model}_{i}" for i in range(len(documents))]
|
| 233 |
+
# Add to ChromaDB collection
|
| 234 |
+
collection.add(
|
| 235 |
+
documents=documents,
|
| 236 |
+
metadatas=metadatas,
|
| 237 |
+
ids=ids
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
|
| 241 |
|
| 242 |
# Initialize the ranker
|
| 243 |
ranker = Reranker("answerdotai/answerai-colbert-small-v1", model_type='colbert')
|
|
|
|
| 244 |
# Call initialize function
|
| 245 |
initialize()
|
| 246 |
|
|
|
|
| 254 |
)
|
| 255 |
|
| 256 |
if __name__ == "__main__":
|
| 257 |
+
# iface.launch(server_name="0.0.0.0", server_port=7860)
|
| 258 |
+
iface.launch()
|
chromadb/chroma.sqlite3 → car-manuals/manual_Astor.pdf
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7275b9aae94841441d33ec596e65ffe2bd738f42a980ab1b53d26d35a725b73e
|
| 3 |
+
size 8105807
|
chromadb/e820442b-1d6c-4933-8a2c-981f60377458/data_level0.bin → car-manuals/manual_Tiago.pdf
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b71ee499e53973ccbabdd49b11995cc374bf9c543d372d4bc63ea8f7414cd7fa
|
| 3 |
+
size 2564414
|
chromadb/e820442b-1d6c-4933-8a2c-981f60377458/header.bin
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:e87a1dc8bcae6f2c4bea6d5dd5005454d4dace8637dae29bff3c037ea771411e
|
| 3 |
-
size 100
|
|
|
|
|
|
|
|
|
|
|
|
chromadb/e820442b-1d6c-4933-8a2c-981f60377458/length.bin
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:03e1219ac9d4a1a30d3d5f9f3dfc60df85e0844f2b73f04e8f641cc4a101a470
|
| 3 |
-
size 4000
|
|
|
|
|
|
|
|
|
|
|
|
chromadb/e820442b-1d6c-4933-8a2c-981f60377458/link_lists.bin
DELETED
|
File without changes
|
requirements.txt
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
-
# requirements.txt
|
| 2 |
-
|
| 3 |
gradio
|
| 4 |
torch
|
| 5 |
sentence_transformers
|
|
|
|
|
|
|
|
|
|
| 1 |
gradio
|
| 2 |
torch
|
| 3 |
sentence_transformers
|