Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| import os | |
| import re | |
| import tempfile | |
| from collections.abc import Iterator | |
| from threading import Thread | |
| import cv2 | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from loguru import logger | |
| from PIL import Image | |
| from transformers import AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer | |
| model_id = os.getenv("MODEL_ID", "google/medgemma-4b-it") | |
| processor = AutoProcessor.from_pretrained(model_id) | |
| model = AutoModelForImageTextToText.from_pretrained( | |
| model_id, device_map="auto", torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,token=os.environ.get("HF_TOKEN", "YOUR_HF_TOKEN") | |
| ) | |
| MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5")) | |
| def count_files_in_new_message(paths: list[str]) -> tuple[int, int]: | |
| image_count = 0 | |
| video_count = 0 | |
| for path in paths: | |
| if path.endswith(".mp4"): | |
| video_count += 1 | |
| else: | |
| image_count += 1 | |
| return image_count, video_count | |
| def count_files_in_history(history: list[dict]) -> tuple[int, int]: | |
| image_count = 0 | |
| video_count = 0 | |
| for item in history: | |
| if item["role"] != "user" or isinstance(item["content"], str): | |
| continue | |
| if item["content"][0].endswith(".mp4"): | |
| video_count += 1 | |
| else: | |
| image_count += 1 | |
| return image_count, video_count | |
| def validate_media_constraints(message: dict, history: list[dict]) -> bool: | |
| new_image_count, new_video_count = count_files_in_new_message(message["files"]) | |
| history_image_count, history_video_count = count_files_in_history(history) | |
| image_count = history_image_count + new_image_count | |
| video_count = history_video_count + new_video_count | |
| if video_count > 1: | |
| gr.Warning("Only one video is supported.") | |
| return False | |
| if video_count == 1: | |
| if image_count > 0: | |
| gr.Warning("Mixing images and videos is not allowed.") | |
| return False | |
| if "<image>" in message["text"]: | |
| gr.Warning("Using <image> tags with video files is not supported.") | |
| return False | |
| if video_count == 0 and image_count > MAX_NUM_IMAGES: | |
| gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.") | |
| return False | |
| if "<image>" in message["text"] and message["text"].count("<image>") != new_image_count: | |
| gr.Warning("The number of <image> tags in the text does not match the number of images.") | |
| return False | |
| return True | |
| def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]: | |
| vidcap = cv2.VideoCapture(video_path) | |
| fps = vidcap.get(cv2.CAP_PROP_FPS) | |
| total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| frame_interval = max(total_frames // MAX_NUM_IMAGES, 1) | |
| frames: list[tuple[Image.Image, float]] = [] | |
| for i in range(0, min(total_frames, MAX_NUM_IMAGES * frame_interval), frame_interval): | |
| if len(frames) >= MAX_NUM_IMAGES: | |
| break | |
| vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = vidcap.read() | |
| if success: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| pil_image = Image.fromarray(image) | |
| timestamp = round(i / fps, 2) | |
| frames.append((pil_image, timestamp)) | |
| vidcap.release() | |
| return frames | |
| def process_video(video_path: str) -> list[dict]: | |
| content = [] | |
| frames = downsample_video(video_path) | |
| for frame in frames: | |
| pil_image, timestamp = frame | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: | |
| pil_image.save(temp_file.name) | |
| content.append({"type": "text", "text": f"Frame {timestamp}:"}) | |
| content.append({"type": "image", "url": temp_file.name}) | |
| logger.debug(f"{content=}") | |
| return content | |
| def process_interleaved_images(message: dict) -> list[dict]: | |
| logger.debug(f"{message['files']=}") | |
| parts = re.split(r"(<image>)", message["text"]) | |
| logger.debug(f"{parts=}") | |
| content = [] | |
| image_index = 0 | |
| for part in parts: | |
| logger.debug(f"{part=}") | |
| if part == "<image>": | |
| content.append({"type": "image", "url": message["files"][image_index]}) | |
| logger.debug(f"file: {message['files'][image_index]}") | |
| image_index += 1 | |
| elif part.strip(): | |
| content.append({"type": "text", "text": part.strip()}) | |
| elif isinstance(part, str) and part != "<image>": | |
| content.append({"type": "text", "text": part}) | |
| logger.debug(f"{content=}") | |
| return content | |
| def process_new_user_message(message: dict) -> list[dict]: | |
| if not message["files"]: | |
| return [{"type": "text", "text": message["text"]}] | |
| if message["files"][0].endswith(".mp4"): | |
| return [{"type": "text", "text": message["text"]}, *process_video(message["files"][0])] | |
| if "<image>" in message["text"]: | |
| return process_interleaved_images(message) | |
| return [ | |
| {"type": "text", "text": message["text"]}, | |
| *[{"type": "image", "url": path} for path in message["files"]], | |
| ] | |
| def process_history(history: list[dict]) -> list[dict]: | |
| messages = [] | |
| current_user_content: list[dict] = [] | |
| for item in history: | |
| if item["role"] == "assistant": | |
| if current_user_content: | |
| messages.append({"role": "user", "content": current_user_content}) | |
| current_user_content = [] | |
| messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) | |
| else: | |
| content = item["content"] | |
| if isinstance(content, str): | |
| current_user_content.append({"type": "text", "text": content}) | |
| else: | |
| current_user_content.append({"type": "image", "url": content[0]}) | |
| return messages | |
| def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 2048) -> Iterator[str]: | |
| if not validate_media_constraints(message, history): | |
| yield "" | |
| return | |
| messages = [] | |
| if system_prompt: | |
| messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]}) | |
| messages.extend(process_history(history)) | |
| messages.append({"role": "user", "content": process_new_user_message(message)}) | |
| inputs = processor.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| tokenize=True, | |
| return_dict=True, | |
| return_tensors="pt", | |
| ).to(device=model.device) | |
| streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| inputs, | |
| max_new_tokens=max_new_tokens, | |
| streamer=streamer, | |
| temperature=1.0, | |
| top_p=0.95, | |
| top_k=64, | |
| min_p=0.0, | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| output = "" | |
| for delta in streamer: | |
| output += delta | |
| yield output | |
| # Custom CSS for the UI | |
| custom_css = """ | |
| :root { | |
| --primary: #4f46e5; | |
| --primary-dark: #4338ca; | |
| --text: #1f2937; | |
| --background: #f9fafb; | |
| --chat-bg: #ffffff; | |
| --user-bubble: #e0e7ff; | |
| --bot-bubble: #f3f4f6; | |
| --border: #e5e7eb; | |
| } | |
| .dark { | |
| --primary: #6366f1; | |
| --primary-dark: #4f46e5; | |
| --text: #f3f4f6; | |
| --background: #111827; | |
| --chat-bg: #1f2937; | |
| --user-bubble: #4338ca; | |
| --bot-bubble: #374151; | |
| --border: #4b5563; | |
| } | |
| body { | |
| font-family: 'Inter', sans-serif; | |
| } | |
| .gr-chatbot { | |
| background-color: var(--chat-bg); | |
| border-radius: 12px; | |
| border: 1px solid var(--border); | |
| box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1); | |
| } | |
| .gr-chat-message { | |
| padding: 16px 20px; | |
| border-radius: 12px; | |
| margin: 8px 0; | |
| max-width: 80%; | |
| } | |
| .gr-chat-message-user { | |
| background-color: var(--user-bubble); | |
| margin-left: auto; | |
| border-bottom-right-radius: 4px; | |
| } | |
| .gr-chat-message-bot { | |
| background-color: var(--bot-bubble); | |
| margin-right: auto; | |
| border-bottom-left-radius: 4px; | |
| } | |
| .gr-textbox textarea { | |
| min-height: 120px; | |
| border-radius: 12px; | |
| padding: 16px; | |
| background-color: var(--background); | |
| color: var(--text); | |
| border: 1px solid var(--border); | |
| } | |
| .gr-button { | |
| background-color: var(--primary) !important; | |
| color: white !important; | |
| border-radius: 8px !important; | |
| padding: 10px 20px !important; | |
| font-weight: 500 !important; | |
| transition: all 0.2s !important; | |
| } | |
| .gr-button:hover { | |
| background-color: var(--primary-dark) !important; | |
| transform: translateY(-1px) !important; | |
| } | |
| .gr-button:active { | |
| transform: translateY(0) !important; | |
| } | |
| .gr-interface { | |
| max-width: 900px; | |
| margin: 0 auto; | |
| padding: 24px; | |
| } | |
| .gr-header { | |
| text-align: center; | |
| margin-bottom: 24px; | |
| } | |
| .gr-header h1 { | |
| font-size: 2.5rem; | |
| font-weight: 700; | |
| color: var(--primary); | |
| margin-bottom: 8px; | |
| } | |
| .gr-header p { | |
| color: var(--text); | |
| opacity: 0.8; | |
| font-size: 1.1rem; | |
| } | |
| .gr-image-preview { | |
| border-radius: 8px; | |
| max-width: 100%; | |
| max-height: 300px; | |
| object-fit: contain; | |
| } | |
| .gr-video-preview { | |
| border-radius: 8px; | |
| max-width: 100%; | |
| max-height: 300px; | |
| } | |
| """ | |
| DESCRIPTION = """\ | |
| ## Medical Vision-Language Assistant | |
| This advanced AI assistant can understand and analyze medical images, videos, and text. | |
| Upload images or a video along with your questions to get insights. | |
| **Features:** | |
| - Analyze medical images (X-rays, CT scans, etc.) | |
| - Process video frames from medical videos | |
| - Interleave images with text questions | |
| - Customize system behavior with prompts | |
| """ | |
| demo = gr.ChatInterface( | |
| fn=run, | |
| type="messages", | |
| chatbot=gr.Chatbot( | |
| type="messages", | |
| scale=1, | |
| allow_tags=["image"], | |
| bubble_full_width=False, | |
| avatar_images=( | |
| "assets/user.png", # User avatar | |
| "assets/doctor.png" # Bot avatar (replace with your own) | |
| ), | |
| render=False # We'll handle rendering in CSS | |
| ), | |
| textbox=gr.MultimodalTextbox( | |
| file_types=["image", ".mp4"], | |
| file_count="multiple", | |
| autofocus=True, | |
| placeholder="Type your message or upload images/video...", | |
| ), | |
| multimodal=True, | |
| additional_inputs=[ | |
| gr.Textbox( | |
| label="System Prompt", | |
| value="You are a helpful and knowledgeable medical expert. Provide accurate, detailed explanations in clear language.", | |
| info="Guide the assistant's behavior and expertise" | |
| ), | |
| gr.Slider( | |
| label="Response Length", | |
| minimum=100, | |
| maximum=4096, | |
| step=10, | |
| value=1024, | |
| info="Control how verbose the responses are" | |
| ), | |
| ], | |
| stop_btn=None, | |
| title="", | |
| description=DESCRIPTION, | |
| examples=[ | |
| ["What abnormalities do you see in this chest X-ray?", "examples/chest_xray.jpg"], | |
| ["Explain the key findings in this MRI scan.", "examples/brain_mri.jpg"], | |
| ["Describe the progression shown in this video.", "examples/heart_ultrasound.mp4"], | |
| ], | |
| cache_examples=False, | |
| css=custom_css, | |
| theme=gr.themes.Default( | |
| primary_hue="indigo", | |
| secondary_hue="gray", | |
| font=["Inter", "sans-serif"] | |
| ), | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |