Spaces:
Runtime error
Runtime error
Commit
·
83ba8b2
1
Parent(s):
496ebff
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
# Load the sentiment analysis model from Hugging Face
|
| 5 |
+
classifier = pipeline('sentiment-analysis')
|
| 6 |
+
|
| 7 |
+
# Create a Streamlit app
|
| 8 |
+
st.title('Sentiment Analysis with Hugging Face')
|
| 9 |
+
st.write('Enter some text and we will predict its sentiment!')
|
| 10 |
+
|
| 11 |
+
# Add a text input box for the user to enter text
|
| 12 |
+
text_input = st.text_input('Enter text here')
|
| 13 |
+
|
| 14 |
+
# When the user submits text, run the sentiment analysis model on it
|
| 15 |
+
if st.button('Submit'):
|
| 16 |
+
# Predict the sentiment of the text using the Hugging Face model
|
| 17 |
+
sentiment = classifier(text_input)[0]['label']
|
| 18 |
+
|
| 19 |
+
# Display the sentiment prediction to the user
|
| 20 |
+
st.write(f'Sentiment: {sentiment}')
|