Spaces:
Running
Running
Adding eda and rag as templates
Browse files- app.py +8 -6
- notebooks/eda.json +14 -14
- notebooks/finetuning.json +0 -6
- notebooks/rag.json +82 -1
- utils/notebook_utils.py +0 -457
app.py
CHANGED
|
@@ -32,6 +32,11 @@ client = Client(headers=HEADERS)
|
|
| 32 |
|
| 33 |
logging.basicConfig(level=logging.INFO)
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
def get_compatible_libraries(dataset: str):
|
| 37 |
try:
|
|
@@ -116,11 +121,6 @@ def _push_to_hub(
|
|
| 116 |
raise
|
| 117 |
|
| 118 |
|
| 119 |
-
folder_path = "notebooks"
|
| 120 |
-
notebook_templates = load_json_files_from_folder(folder_path)
|
| 121 |
-
logging.info(f"Available notebooks {notebook_templates.keys()}")
|
| 122 |
-
|
| 123 |
-
|
| 124 |
def generate_cells(dataset_id, notebook_title):
|
| 125 |
logging.info(f"Generating {notebook_title} notebook for dataset {dataset_id}")
|
| 126 |
cells = notebook_templates[notebook_title]["notebook_template"]
|
|
@@ -248,7 +248,9 @@ with gr.Blocks(
|
|
| 248 |
gr.Markdown("## 2. Select the type of notebook you want to generate")
|
| 249 |
with gr.Row():
|
| 250 |
notebook_type = gr.Dropdown(
|
| 251 |
-
choices=notebook_templates.keys(),
|
|
|
|
|
|
|
| 252 |
)
|
| 253 |
generate_button = gr.Button("Generate Notebook", variant="primary")
|
| 254 |
contribute_btn = gr.Button(
|
|
|
|
| 32 |
|
| 33 |
logging.basicConfig(level=logging.INFO)
|
| 34 |
|
| 35 |
+
# TODO: Validate notebook templates format
|
| 36 |
+
folder_path = "notebooks"
|
| 37 |
+
notebook_templates = load_json_files_from_folder(folder_path)
|
| 38 |
+
logging.info(f"Available notebooks {notebook_templates.keys()}")
|
| 39 |
+
|
| 40 |
|
| 41 |
def get_compatible_libraries(dataset: str):
|
| 42 |
try:
|
|
|
|
| 121 |
raise
|
| 122 |
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
def generate_cells(dataset_id, notebook_title):
|
| 125 |
logging.info(f"Generating {notebook_title} notebook for dataset {dataset_id}")
|
| 126 |
cells = notebook_templates[notebook_title]["notebook_template"]
|
|
|
|
| 248 |
gr.Markdown("## 2. Select the type of notebook you want to generate")
|
| 249 |
with gr.Row():
|
| 250 |
notebook_type = gr.Dropdown(
|
| 251 |
+
choices=notebook_templates.keys(),
|
| 252 |
+
label="Notebook type",
|
| 253 |
+
value="Text Embeddings",
|
| 254 |
)
|
| 255 |
generate_button = gr.Button("Generate Notebook", variant="primary")
|
| 256 |
contribute_btn = gr.Button(
|
notebooks/eda.json
CHANGED
|
@@ -5,7 +5,7 @@
|
|
| 5 |
"notebook_template": [
|
| 6 |
{
|
| 7 |
"cell_type": "markdown",
|
| 8 |
-
"source": "
|
| 9 |
},
|
| 10 |
{
|
| 11 |
"cell_type": "markdown",
|
|
@@ -13,15 +13,15 @@
|
|
| 13 |
},
|
| 14 |
{
|
| 15 |
"cell_type": "code",
|
| 16 |
-
"source": "
|
| 17 |
},
|
| 18 |
{
|
| 19 |
"cell_type": "code",
|
| 20 |
-
"source": "
|
| 21 |
},
|
| 22 |
{
|
| 23 |
"cell_type": "code",
|
| 24 |
-
"source": "
|
| 25 |
},
|
| 26 |
{
|
| 27 |
"cell_type": "markdown",
|
|
@@ -29,28 +29,28 @@
|
|
| 29 |
},
|
| 30 |
{
|
| 31 |
"cell_type": "code",
|
| 32 |
-
"source": "
|
| 33 |
},
|
| 34 |
{
|
| 35 |
"cell_type": "code",
|
| 36 |
-
"source": "
|
| 37 |
},
|
| 38 |
{
|
| 39 |
"cell_type": "code",
|
| 40 |
-
"source": "
|
| 41 |
},
|
| 42 |
{
|
| 43 |
"cell_type": "code",
|
| 44 |
-
"source": "
|
| 45 |
},
|
| 46 |
{
|
| 47 |
"cell_type": "code",
|
| 48 |
-
"source": "
|
| 49 |
},
|
| 50 |
{
|
| 51 |
"type": "categoric",
|
| 52 |
"cell_type": "code",
|
| 53 |
-
"source": "
|
| 54 |
},
|
| 55 |
{
|
| 56 |
"cell_type": "markdown",
|
|
@@ -59,22 +59,22 @@
|
|
| 59 |
{
|
| 60 |
"type": "numeric",
|
| 61 |
"cell_type": "code",
|
| 62 |
-
"source": "
|
| 63 |
},
|
| 64 |
{
|
| 65 |
"type": "numeric",
|
| 66 |
"cell_type": "code",
|
| 67 |
-
"source": "
|
| 68 |
},
|
| 69 |
{
|
| 70 |
"type": "categoric",
|
| 71 |
"cell_type": "code",
|
| 72 |
-
"source": "
|
| 73 |
},
|
| 74 |
{
|
| 75 |
"type": "numeric",
|
| 76 |
"cell_type": "code",
|
| 77 |
-
"source": "
|
| 78 |
}
|
| 79 |
]
|
| 80 |
}
|
|
|
|
| 5 |
"notebook_template": [
|
| 6 |
{
|
| 7 |
"cell_type": "markdown",
|
| 8 |
+
"source": "---\n# **Exploratory Data Analysis (EDA) Notebook for {dataset_name} dataset**\n---"
|
| 9 |
},
|
| 10 |
{
|
| 11 |
"cell_type": "markdown",
|
|
|
|
| 13 |
},
|
| 14 |
{
|
| 15 |
"cell_type": "code",
|
| 16 |
+
"source": "# Install and import necessary libraries.\n!pip install pandas matplotlib seaborn"
|
| 17 |
},
|
| 18 |
{
|
| 19 |
"cell_type": "code",
|
| 20 |
+
"source": "import matplotlib.pyplot as plt\nimport seaborn as sns"
|
| 21 |
},
|
| 22 |
{
|
| 23 |
"cell_type": "code",
|
| 24 |
+
"source": "# Load the dataset as a DataFrame\n{first_code}"
|
| 25 |
},
|
| 26 |
{
|
| 27 |
"cell_type": "markdown",
|
|
|
|
| 29 |
},
|
| 30 |
{
|
| 31 |
"cell_type": "code",
|
| 32 |
+
"source": "# First rows of the dataset and info\nprint(df.head())\nprint(df.info())"
|
| 33 |
},
|
| 34 |
{
|
| 35 |
"cell_type": "code",
|
| 36 |
+
"source": "# Check for missing values\nprint(df.isnull().sum())"
|
| 37 |
},
|
| 38 |
{
|
| 39 |
"cell_type": "code",
|
| 40 |
+
"source": "# Identify data types of each column\nprint(df.dtypes)"
|
| 41 |
},
|
| 42 |
{
|
| 43 |
"cell_type": "code",
|
| 44 |
+
"source": "# Detect duplicated rows\nprint(df.duplicated().sum())"
|
| 45 |
},
|
| 46 |
{
|
| 47 |
"cell_type": "code",
|
| 48 |
+
"source": "# Generate descriptive statistics\nprint(df.describe())"
|
| 49 |
},
|
| 50 |
{
|
| 51 |
"type": "categoric",
|
| 52 |
"cell_type": "code",
|
| 53 |
+
"source": "# Unique values in categorical columns\ndf.select_dtypes(include=['object']).nunique()"
|
| 54 |
},
|
| 55 |
{
|
| 56 |
"cell_type": "markdown",
|
|
|
|
| 59 |
{
|
| 60 |
"type": "numeric",
|
| 61 |
"cell_type": "code",
|
| 62 |
+
"source": "# Correlation matrix for numerical columns\ncorr_matrix = df.corr(numeric_only=True)\nplt.figure(figsize=(10, 8))\nsns.heatmap(corr_matrix, annot=True, fmt='.2f', cmap='coolwarm', square=True)\nplt.title('Correlation Matrix')\nplt.show()"
|
| 63 |
},
|
| 64 |
{
|
| 65 |
"type": "numeric",
|
| 66 |
"cell_type": "code",
|
| 67 |
+
"source": "# Distribution plots for numerical columns\nfor column in df.select_dtypes(include=['int64', 'float64']).columns:\n plt.figure(figsize=(8, 4))\n sns.histplot(df[column], kde=True)\n plt.title(f'Distribution of {column}')\n plt.xlabel(column)\n plt.ylabel('Frequency')\n plt.show()"
|
| 68 |
},
|
| 69 |
{
|
| 70 |
"type": "categoric",
|
| 71 |
"cell_type": "code",
|
| 72 |
+
"source": "# Count plots for categorical columns\nfor column in df.select_dtypes(include=['object']).columns:\n plt.figure(figsize=(8, 4))\n sns.countplot(x=column, data=df)\n plt.title(f'Count Plot of {column}')\n plt.xlabel(column)\n plt.ylabel('Count')\n plt.show()"
|
| 73 |
},
|
| 74 |
{
|
| 75 |
"type": "numeric",
|
| 76 |
"cell_type": "code",
|
| 77 |
+
"source": "# Box plots for detecting outliers in numerical columns\nfor column in df.select_dtypes(include=['int64', 'float64']).columns:\n plt.figure(figsize=(8, 4))\n sns.boxplot(df[column])\n plt.title(f'Box Plot of {column}')\n plt.xlabel(column)\n plt.show()"
|
| 78 |
}
|
| 79 |
]
|
| 80 |
}
|
notebooks/finetuning.json
DELETED
|
@@ -1,6 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"notebook_title": "Supervised fine-tuning (SFT)",
|
| 3 |
-
"notebook_type": "sft",
|
| 4 |
-
"dataset_type": "numeric",
|
| 5 |
-
"notebook_template": []
|
| 6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
notebooks/rag.json
CHANGED
|
@@ -2,5 +2,86 @@
|
|
| 2 |
"notebook_title": "Retrieval-augmented generation (RAG)",
|
| 3 |
"notebook_type": "rag",
|
| 4 |
"dataset_type": "text",
|
| 5 |
-
"notebook_template": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
}
|
|
|
|
| 2 |
"notebook_title": "Retrieval-augmented generation (RAG)",
|
| 3 |
"notebook_type": "rag",
|
| 4 |
"dataset_type": "text",
|
| 5 |
+
"notebook_template": [
|
| 6 |
+
{
|
| 7 |
+
"cell_type": "markdown",
|
| 8 |
+
"source": "---\n# **Retrieval-Augmented Generation Notebook for {dataset_name} dataset**\n---"
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "markdown",
|
| 12 |
+
"source": "## 1. Setup necessary libraries and load the dataset"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "code",
|
| 16 |
+
"source": "# Install and import necessary libraries.\n!pip install pandas sentence-transformers faiss-cpu transformers torch huggingface_hub"
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"cell_type": "code",
|
| 20 |
+
"source": "from sentence_transformers import SentenceTransformer\nfrom transformers import AutoModelForCausalLM, AutoTokenizer, pipeline\nfrom huggingface_hub import InferenceClient\nimport pandas as pd\nimport faiss\nimport torch"
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"cell_type": "code",
|
| 24 |
+
"source": "# Load the dataset as a DataFrame\n{first_code}"
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"cell_type": "code",
|
| 28 |
+
"source": "# Specify the column name that contains the text data to generate embeddings\ncolumn_to_generate_embeddings = '{longest_col}'"
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "markdown",
|
| 32 |
+
"source": "## 2. Loading embedding model and creating FAISS index"
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"cell_type": "code",
|
| 36 |
+
"source": "# Remove duplicate entries based on the specified column\ndf = df.drop_duplicates(subset=column_to_generate_embeddings)"
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"cell_type": "code",
|
| 40 |
+
"source": "# Convert the column data to a list of text entries\ntext_list = df[column_to_generate_embeddings].tolist()"
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"cell_type": "code",
|
| 44 |
+
"source": "# Specify the embedding model you want to use\nmodel = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')"
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"cell_type": "code",
|
| 48 |
+
"source": "vectors = model.encode(text_list)\nvector_dimension = vectors.shape[1]\n\n# Initialize the FAISS index with the appropriate dimension (384 for this model)\nindex = faiss.IndexFlatL2(vector_dimension)\n\n# Encode the text list into embeddings and add them to the FAISS index\nindex.add(vectors)"
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"cell_type": "markdown",
|
| 52 |
+
"source": "## 3. Perform a text search"
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"cell_type": "code",
|
| 56 |
+
"source": "# Specify the text you want to search for in the list\nquery = \"How to cook sushi?\"\n\n# Generate the embedding for the search query\nquery_embedding = model.encode([query])"
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"cell_type": "code",
|
| 60 |
+
"source": "# Perform the search to find the 'k' nearest neighbors (adjust 'k' as needed)\nD, I = index.search(query_embedding, k=10)\n\n# Print the similar documents found\nprint(f\"Similar documents: {[text_list[i] for i in I[0]]}\")"
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"cell_type": "markdown",
|
| 64 |
+
"source": "## 4. Load pipeline and perform inference locally"
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"cell_type": "code",
|
| 68 |
+
"source": "# Adjust model name as needed\ncheckpoint = 'HuggingFaceTB/SmolLM-1.7B-Instruct'\n\ndevice = \"cuda\" if torch.cuda.is_available() else \"cpu\" # for GPU usage or \"cpu\" for CPU usage\n\ntokenizer = AutoTokenizer.from_pretrained(checkpoint)\nmodel = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)\n\ngenerator = pipeline(\"text-generation\", model=model, tokenizer=tokenizer, device=0 if device == \"cuda\" else -1)"
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"cell_type": "code",
|
| 72 |
+
"source": "# Create a prompt with two parts: 'system' for instructions based on a 'context' from the retrieved documents, and 'user' for the query\nselected_elements = [text_list[i] for i in I[0].tolist()]\ncontext = ','.join(selected_elements)\nmessages = [\n {\n \"role\": \"system\",\n \"content\": f\"You are an intelligent assistant tasked with providing accurate and concise answers based on the following context. Use the information retrieved to construct your response. Context: {context}\",\n },\n {\"role\": \"user\", \"content\": query},\n]"
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"cell_type": "code",
|
| 76 |
+
"source": "# Send the prompt to the pipeline and show the answer\noutput = generator(messages)\nprint(\"Generated result:\")\nprint(output[0]['generated_text'][-1]['content']) # Print the assistant's response content"
|
| 77 |
+
},
|
| 78 |
+
{
|
| 79 |
+
"cell_type": "markdown",
|
| 80 |
+
"source": "## 5. Alternatively call the inference client"
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"cell_type": "code",
|
| 84 |
+
"source": "# Adjust model name as needed\ncheckpoint = \"meta-llama/Meta-Llama-3-8B-Instruct\"\n\n# Change here your Hugging Face API token\ntoken = \"hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\" \n\ninference_client = InferenceClient(checkpoint, token=token)\noutput = inference_client.chat_completion(messages=messages, stream=False)\nprint(\"Generated result:\")\nprint(output.choices[0].message.content)"
|
| 85 |
+
}
|
| 86 |
+
]
|
| 87 |
}
|
utils/notebook_utils.py
CHANGED
|
@@ -24,463 +24,6 @@ def replace_wildcards(
|
|
| 24 |
return new_templates
|
| 25 |
|
| 26 |
|
| 27 |
-
embeddings_cells = [
|
| 28 |
-
{
|
| 29 |
-
"cell_type": "markdown",
|
| 30 |
-
"source": """
|
| 31 |
-
---
|
| 32 |
-
# **Embeddings Notebook for {dataset_name} dataset**
|
| 33 |
-
---
|
| 34 |
-
""",
|
| 35 |
-
},
|
| 36 |
-
{
|
| 37 |
-
"cell_type": "markdown",
|
| 38 |
-
"source": "## 1. Setup necessary libraries and load the dataset",
|
| 39 |
-
},
|
| 40 |
-
{
|
| 41 |
-
"cell_type": "code",
|
| 42 |
-
"source": """
|
| 43 |
-
# Install and import necessary libraries.
|
| 44 |
-
!pip install pandas sentence-transformers faiss-cpu
|
| 45 |
-
""",
|
| 46 |
-
},
|
| 47 |
-
{
|
| 48 |
-
"cell_type": "code",
|
| 49 |
-
"source": """
|
| 50 |
-
import pandas as pd
|
| 51 |
-
from sentence_transformers import SentenceTransformer
|
| 52 |
-
import faiss
|
| 53 |
-
""",
|
| 54 |
-
},
|
| 55 |
-
{
|
| 56 |
-
"cell_type": "code",
|
| 57 |
-
"source": """
|
| 58 |
-
# Load the dataset as a DataFrame
|
| 59 |
-
{first_code}
|
| 60 |
-
""",
|
| 61 |
-
},
|
| 62 |
-
{
|
| 63 |
-
"cell_type": "code",
|
| 64 |
-
"source": """
|
| 65 |
-
# Specify the column name that contains the text data to generate embeddings
|
| 66 |
-
column_to_generate_embeddings = '{longest_col}'
|
| 67 |
-
""",
|
| 68 |
-
},
|
| 69 |
-
{
|
| 70 |
-
"cell_type": "markdown",
|
| 71 |
-
"source": "## 2. Loading embedding model and creating FAISS index",
|
| 72 |
-
},
|
| 73 |
-
{
|
| 74 |
-
"cell_type": "code",
|
| 75 |
-
"source": """
|
| 76 |
-
# Remove duplicate entries based on the specified column
|
| 77 |
-
df = df.drop_duplicates(subset=column_to_generate_embeddings)
|
| 78 |
-
""",
|
| 79 |
-
},
|
| 80 |
-
{
|
| 81 |
-
"cell_type": "code",
|
| 82 |
-
"source": """
|
| 83 |
-
# Convert the column data to a list of text entries
|
| 84 |
-
text_list = df[column_to_generate_embeddings].tolist()
|
| 85 |
-
""",
|
| 86 |
-
},
|
| 87 |
-
{
|
| 88 |
-
"cell_type": "code",
|
| 89 |
-
"source": """
|
| 90 |
-
# Specify the embedding model you want to use
|
| 91 |
-
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 92 |
-
""",
|
| 93 |
-
},
|
| 94 |
-
{
|
| 95 |
-
"cell_type": "code",
|
| 96 |
-
"source": """
|
| 97 |
-
vectors = model.encode(text_list)
|
| 98 |
-
vector_dimension = vectors.shape[1]
|
| 99 |
-
|
| 100 |
-
# Initialize the FAISS index with the appropriate dimension (384 for this model)
|
| 101 |
-
index = faiss.IndexFlatL2(vector_dimension)
|
| 102 |
-
|
| 103 |
-
# Encode the text list into embeddings and add them to the FAISS index
|
| 104 |
-
index.add(vectors)
|
| 105 |
-
""",
|
| 106 |
-
},
|
| 107 |
-
{
|
| 108 |
-
"cell_type": "markdown",
|
| 109 |
-
"source": "## 3. Perform a text search",
|
| 110 |
-
},
|
| 111 |
-
{
|
| 112 |
-
"cell_type": "code",
|
| 113 |
-
"source": """
|
| 114 |
-
# Specify the text you want to search for in the list
|
| 115 |
-
text_to_search = text_list[0]
|
| 116 |
-
print(f"Text to search: {text_to_search}")
|
| 117 |
-
""",
|
| 118 |
-
},
|
| 119 |
-
{
|
| 120 |
-
"cell_type": "code",
|
| 121 |
-
"source": """
|
| 122 |
-
# Generate the embedding for the search query
|
| 123 |
-
query_embedding = model.encode([text_to_search])
|
| 124 |
-
""",
|
| 125 |
-
},
|
| 126 |
-
{
|
| 127 |
-
"cell_type": "code",
|
| 128 |
-
"source": """
|
| 129 |
-
# Perform the search to find the 'k' nearest neighbors (adjust 'k' as needed)
|
| 130 |
-
D, I = index.search(query_embedding, k=10)
|
| 131 |
-
|
| 132 |
-
# Print the similar documents found
|
| 133 |
-
print(f"Similar documents: {[text_list[i] for i in I[0]]}")
|
| 134 |
-
""",
|
| 135 |
-
},
|
| 136 |
-
]
|
| 137 |
-
|
| 138 |
-
eda_cells = [
|
| 139 |
-
{
|
| 140 |
-
"cell_type": "markdown",
|
| 141 |
-
"source": """
|
| 142 |
-
---
|
| 143 |
-
# **Exploratory Data Analysis (EDA) Notebook for {dataset_name} dataset**
|
| 144 |
-
---
|
| 145 |
-
""",
|
| 146 |
-
},
|
| 147 |
-
{
|
| 148 |
-
"cell_type": "markdown",
|
| 149 |
-
"source": "## 1. Setup necessary libraries and load the dataset",
|
| 150 |
-
},
|
| 151 |
-
{
|
| 152 |
-
"cell_type": "code",
|
| 153 |
-
"source": """
|
| 154 |
-
# Install and import necessary libraries.
|
| 155 |
-
!pip install pandas matplotlib seaborn
|
| 156 |
-
""",
|
| 157 |
-
},
|
| 158 |
-
{
|
| 159 |
-
"cell_type": "code",
|
| 160 |
-
"source": """
|
| 161 |
-
import pandas as pd
|
| 162 |
-
import matplotlib.pyplot as plt
|
| 163 |
-
import seaborn as sns
|
| 164 |
-
""",
|
| 165 |
-
},
|
| 166 |
-
{
|
| 167 |
-
"cell_type": "code",
|
| 168 |
-
"source": """
|
| 169 |
-
# Load the dataset as a DataFrame
|
| 170 |
-
{first_code}
|
| 171 |
-
""",
|
| 172 |
-
},
|
| 173 |
-
{
|
| 174 |
-
"cell_type": "markdown",
|
| 175 |
-
"source": "## 2. Understanding the Dataset",
|
| 176 |
-
},
|
| 177 |
-
{
|
| 178 |
-
"cell_type": "code",
|
| 179 |
-
"source": """
|
| 180 |
-
# First rows of the dataset and info
|
| 181 |
-
print(df.head())
|
| 182 |
-
print(df.info())
|
| 183 |
-
""",
|
| 184 |
-
},
|
| 185 |
-
{
|
| 186 |
-
"cell_type": "code",
|
| 187 |
-
"source": """
|
| 188 |
-
# Check for missing values
|
| 189 |
-
print(df.isnull().sum())
|
| 190 |
-
""",
|
| 191 |
-
},
|
| 192 |
-
{
|
| 193 |
-
"cell_type": "code",
|
| 194 |
-
"source": """
|
| 195 |
-
# Identify data types of each column
|
| 196 |
-
print(df.dtypes)
|
| 197 |
-
""",
|
| 198 |
-
},
|
| 199 |
-
{
|
| 200 |
-
"cell_type": "code",
|
| 201 |
-
"source": """
|
| 202 |
-
# Detect duplicated rows
|
| 203 |
-
print(df.duplicated().sum())
|
| 204 |
-
""",
|
| 205 |
-
},
|
| 206 |
-
{
|
| 207 |
-
"cell_type": "code",
|
| 208 |
-
"source": """
|
| 209 |
-
# Generate descriptive statistics
|
| 210 |
-
print(df.describe())
|
| 211 |
-
""",
|
| 212 |
-
},
|
| 213 |
-
{
|
| 214 |
-
"type": "categoric",
|
| 215 |
-
"cell_type": "code",
|
| 216 |
-
"source": """
|
| 217 |
-
# Unique values in categorical columns
|
| 218 |
-
df.select_dtypes(include=['object']).nunique()
|
| 219 |
-
""",
|
| 220 |
-
},
|
| 221 |
-
{
|
| 222 |
-
"cell_type": "markdown",
|
| 223 |
-
"source": "## 3. Data Visualization",
|
| 224 |
-
},
|
| 225 |
-
{
|
| 226 |
-
"type": "numeric",
|
| 227 |
-
"cell_type": "code",
|
| 228 |
-
"source": """
|
| 229 |
-
# Correlation matrix for numerical columns
|
| 230 |
-
corr_matrix = df.corr(numeric_only=True)
|
| 231 |
-
plt.figure(figsize=(10, 8))
|
| 232 |
-
sns.heatmap(corr_matrix, annot=True, fmt='.2f', cmap='coolwarm', square=True)
|
| 233 |
-
plt.title('Correlation Matrix')
|
| 234 |
-
plt.show()
|
| 235 |
-
""",
|
| 236 |
-
},
|
| 237 |
-
{
|
| 238 |
-
"type": "numeric",
|
| 239 |
-
"cell_type": "code",
|
| 240 |
-
"source": """
|
| 241 |
-
# Distribution plots for numerical columns
|
| 242 |
-
for column in df.select_dtypes(include=['int64', 'float64']).columns:
|
| 243 |
-
plt.figure(figsize=(8, 4))
|
| 244 |
-
sns.histplot(df[column], kde=True)
|
| 245 |
-
plt.title(f'Distribution of {column}')
|
| 246 |
-
plt.xlabel(column)
|
| 247 |
-
plt.ylabel('Frequency')
|
| 248 |
-
plt.show()
|
| 249 |
-
""",
|
| 250 |
-
},
|
| 251 |
-
{
|
| 252 |
-
"type": "categoric",
|
| 253 |
-
"cell_type": "code",
|
| 254 |
-
"source": """
|
| 255 |
-
# Count plots for categorical columns
|
| 256 |
-
for column in df.select_dtypes(include=['object']).columns:
|
| 257 |
-
plt.figure(figsize=(8, 4))
|
| 258 |
-
sns.countplot(x=column, data=df)
|
| 259 |
-
plt.title(f'Count Plot of {column}')
|
| 260 |
-
plt.xlabel(column)
|
| 261 |
-
plt.ylabel('Count')
|
| 262 |
-
plt.show()
|
| 263 |
-
""",
|
| 264 |
-
},
|
| 265 |
-
{
|
| 266 |
-
"type": "numeric",
|
| 267 |
-
"cell_type": "code",
|
| 268 |
-
"source": """
|
| 269 |
-
# Box plots for detecting outliers in numerical columns
|
| 270 |
-
for column in df.select_dtypes(include=['int64', 'float64']).columns:
|
| 271 |
-
plt.figure(figsize=(8, 4))
|
| 272 |
-
sns.boxplot(df[column])
|
| 273 |
-
plt.title(f'Box Plot of {column}')
|
| 274 |
-
plt.xlabel(column)
|
| 275 |
-
plt.show()
|
| 276 |
-
""",
|
| 277 |
-
},
|
| 278 |
-
]
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
rag_cells = [
|
| 282 |
-
{
|
| 283 |
-
"cell_type": "markdown",
|
| 284 |
-
"source": """
|
| 285 |
-
---
|
| 286 |
-
# **Retrieval-Augmented Generation Notebook for {dataset_name} dataset**
|
| 287 |
-
---
|
| 288 |
-
""",
|
| 289 |
-
},
|
| 290 |
-
{
|
| 291 |
-
"cell_type": "markdown",
|
| 292 |
-
"source": "## 1. Setup necessary libraries and load the dataset",
|
| 293 |
-
},
|
| 294 |
-
{
|
| 295 |
-
"cell_type": "code",
|
| 296 |
-
"source": """
|
| 297 |
-
# Install and import necessary libraries.
|
| 298 |
-
!pip install pandas sentence-transformers faiss-cpu transformers torch huggingface_hub
|
| 299 |
-
""",
|
| 300 |
-
},
|
| 301 |
-
{
|
| 302 |
-
"cell_type": "code",
|
| 303 |
-
"source": """
|
| 304 |
-
from sentence_transformers import SentenceTransformer
|
| 305 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 306 |
-
from huggingface_hub import InferenceClient
|
| 307 |
-
import pandas as pd
|
| 308 |
-
import faiss
|
| 309 |
-
import torch
|
| 310 |
-
""",
|
| 311 |
-
},
|
| 312 |
-
{
|
| 313 |
-
"cell_type": "code",
|
| 314 |
-
"source": """
|
| 315 |
-
# Load the dataset as a DataFrame
|
| 316 |
-
{first_code}
|
| 317 |
-
""",
|
| 318 |
-
},
|
| 319 |
-
{
|
| 320 |
-
"cell_type": "code",
|
| 321 |
-
"source": """
|
| 322 |
-
# Specify the column name that contains the text data to generate embeddings
|
| 323 |
-
column_to_generate_embeddings = '{longest_col}'
|
| 324 |
-
""",
|
| 325 |
-
},
|
| 326 |
-
{
|
| 327 |
-
"cell_type": "markdown",
|
| 328 |
-
"source": "## 2. Loading embedding model and creating FAISS index",
|
| 329 |
-
},
|
| 330 |
-
{
|
| 331 |
-
"cell_type": "code",
|
| 332 |
-
"source": """
|
| 333 |
-
# Remove duplicate entries based on the specified column
|
| 334 |
-
df = df.drop_duplicates(subset=column_to_generate_embeddings)
|
| 335 |
-
""",
|
| 336 |
-
},
|
| 337 |
-
{
|
| 338 |
-
"cell_type": "code",
|
| 339 |
-
"source": """
|
| 340 |
-
# Convert the column data to a list of text entries
|
| 341 |
-
text_list = df[column_to_generate_embeddings].tolist()
|
| 342 |
-
""",
|
| 343 |
-
},
|
| 344 |
-
{
|
| 345 |
-
"cell_type": "code",
|
| 346 |
-
"source": """
|
| 347 |
-
# Specify the embedding model you want to use
|
| 348 |
-
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 349 |
-
""",
|
| 350 |
-
},
|
| 351 |
-
{
|
| 352 |
-
"cell_type": "code",
|
| 353 |
-
"source": """
|
| 354 |
-
vectors = model.encode(text_list)
|
| 355 |
-
vector_dimension = vectors.shape[1]
|
| 356 |
-
|
| 357 |
-
# Initialize the FAISS index with the appropriate dimension (384 for this model)
|
| 358 |
-
index = faiss.IndexFlatL2(vector_dimension)
|
| 359 |
-
|
| 360 |
-
# Encode the text list into embeddings and add them to the FAISS index
|
| 361 |
-
index.add(vectors)
|
| 362 |
-
""",
|
| 363 |
-
},
|
| 364 |
-
{
|
| 365 |
-
"cell_type": "markdown",
|
| 366 |
-
"source": "## 3. Perform a text search",
|
| 367 |
-
},
|
| 368 |
-
{
|
| 369 |
-
"cell_type": "code",
|
| 370 |
-
"source": """
|
| 371 |
-
# Specify the text you want to search for in the list
|
| 372 |
-
query = "How to cook sushi?"
|
| 373 |
-
|
| 374 |
-
# Generate the embedding for the search query
|
| 375 |
-
query_embedding = model.encode([query])
|
| 376 |
-
""",
|
| 377 |
-
},
|
| 378 |
-
{
|
| 379 |
-
"cell_type": "code",
|
| 380 |
-
"source": """
|
| 381 |
-
# Perform the search to find the 'k' nearest neighbors (adjust 'k' as needed)
|
| 382 |
-
D, I = index.search(query_embedding, k=10)
|
| 383 |
-
|
| 384 |
-
# Print the similar documents found
|
| 385 |
-
print(f"Similar documents: {[text_list[i] for i in I[0]]}")
|
| 386 |
-
""",
|
| 387 |
-
},
|
| 388 |
-
{
|
| 389 |
-
"cell_type": "markdown",
|
| 390 |
-
"source": "## 4. Load pipeline and perform inference locally",
|
| 391 |
-
},
|
| 392 |
-
{
|
| 393 |
-
"cell_type": "code",
|
| 394 |
-
"source": """
|
| 395 |
-
# Adjust model name as needed
|
| 396 |
-
checkpoint = 'HuggingFaceTB/SmolLM-1.7B-Instruct'
|
| 397 |
-
|
| 398 |
-
device = "cuda" if torch.cuda.is_available() else "cpu" # for GPU usage or "cpu" for CPU usage
|
| 399 |
-
|
| 400 |
-
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
| 401 |
-
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
| 402 |
-
|
| 403 |
-
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if device == "cuda" else -1)
|
| 404 |
-
""",
|
| 405 |
-
},
|
| 406 |
-
{
|
| 407 |
-
"cell_type": "code",
|
| 408 |
-
"source": """
|
| 409 |
-
# Create a prompt with two parts: 'system' for instructions based on a 'context' from the retrieved documents, and 'user' for the query
|
| 410 |
-
selected_elements = [text_list[i] for i in I[0].tolist()]
|
| 411 |
-
context = ','.join(selected_elements)
|
| 412 |
-
messages = [
|
| 413 |
-
{
|
| 414 |
-
"role": "system",
|
| 415 |
-
"content": f"You are an intelligent assistant tasked with providing accurate and concise answers based on the following context. Use the information retrieved to construct your response. Context: {context}",
|
| 416 |
-
},
|
| 417 |
-
{"role": "user", "content": query},
|
| 418 |
-
]
|
| 419 |
-
""",
|
| 420 |
-
},
|
| 421 |
-
{
|
| 422 |
-
"cell_type": "code",
|
| 423 |
-
"source": """
|
| 424 |
-
# Send the prompt to the pipeline and show the answer
|
| 425 |
-
output = generator(messages)
|
| 426 |
-
print("Generated result:")
|
| 427 |
-
print(output[0]['generated_text'][-1]['content']) # Print the assistant's response content
|
| 428 |
-
""",
|
| 429 |
-
},
|
| 430 |
-
{
|
| 431 |
-
"cell_type": "markdown",
|
| 432 |
-
"source": "## 5. Alternatively call the inference client",
|
| 433 |
-
},
|
| 434 |
-
{
|
| 435 |
-
"cell_type": "code",
|
| 436 |
-
"source": """
|
| 437 |
-
# Adjust model name as needed
|
| 438 |
-
checkpoint = "meta-llama/Meta-Llama-3-8B-Instruct"
|
| 439 |
-
|
| 440 |
-
# Change here your Hugging Face API token
|
| 441 |
-
token = "hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
|
| 442 |
-
|
| 443 |
-
inference_client = InferenceClient(checkpoint, token=token)
|
| 444 |
-
output = inference_client.chat_completion(messages=messages, stream=False)
|
| 445 |
-
print("Generated result:")
|
| 446 |
-
print(output.choices[0].message.content)
|
| 447 |
-
""",
|
| 448 |
-
},
|
| 449 |
-
]
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
def generate_rag_system_prompt():
|
| 453 |
-
"""
|
| 454 |
-
|
| 455 |
-
1. Install necessary libraries.
|
| 456 |
-
2. Import libraries.
|
| 457 |
-
3. Load the dataset as a DataFrame using the provided code.
|
| 458 |
-
4. Select the column for generating embeddings.
|
| 459 |
-
5. Remove duplicate data.
|
| 460 |
-
6. Convert the selected column to a list.
|
| 461 |
-
7. Load the sentence-transformers model.
|
| 462 |
-
8. Create a FAISS index.
|
| 463 |
-
9. Encode a query sample.
|
| 464 |
-
10. Search for similar documents using the FAISS index.
|
| 465 |
-
11. Load the 'HuggingFaceH4/zephyr-7b-beta' model from the transformers library and create a pipeline.
|
| 466 |
-
12. Create a prompt with two parts: 'system' for instructions based on a 'context' from the retrieved documents, and 'user' for the query.
|
| 467 |
-
13. Send the prompt to the pipeline and display the answer.
|
| 468 |
-
|
| 469 |
-
Ensure the notebook is well-organized with explanations for each step.
|
| 470 |
-
The output should be Markdown content with Python code snippets enclosed in "```python" and "```".
|
| 471 |
-
|
| 472 |
-
The user will provide the dataset information in the following format:
|
| 473 |
-
|
| 474 |
-
## Columns and Data Types
|
| 475 |
-
|
| 476 |
-
## Sample Data
|
| 477 |
-
|
| 478 |
-
## Loading Data code
|
| 479 |
-
|
| 480 |
-
Use the provided code to load the dataset; do not use any other method.
|
| 481 |
-
"""
|
| 482 |
-
|
| 483 |
-
|
| 484 |
def load_json_files_from_folder(folder_path):
|
| 485 |
components = {}
|
| 486 |
|
|
|
|
| 24 |
return new_templates
|
| 25 |
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
def load_json_files_from_folder(folder_path):
|
| 28 |
components = {}
|
| 29 |
|