Spaces:
Build error
Build error
| import os | |
| import duckdb | |
| import gradio as gr | |
| from dotenv import load_dotenv | |
| from httpx import Client | |
| from huggingface_hub import HfApi | |
| from huggingface_hub.utils import logging | |
| from llama_cpp import Llama | |
| load_dotenv() | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables" | |
| BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co" | |
| API_URL = "https://m82etjwvhoptr3t5.us-east-1.aws.endpoints.huggingface.cloud" | |
| headers = { | |
| "Accept" : "application/json", | |
| "Authorization": f"Bearer {HF_TOKEN}", | |
| "Content-Type": "application/json" | |
| } | |
| logger = logging.get_logger(__name__) | |
| client = Client(headers=headers) | |
| api = HfApi(token=HF_TOKEN) | |
| llama = Llama( | |
| model_path="DuckDB-NSQL-7B-v0.1-q8_0.gguf", | |
| n_ctx=2048, | |
| ) | |
| def get_first_parquet(dataset: str): | |
| resp = client.get(f"{BASE_DATASETS_SERVER_URL}/parquet?dataset={dataset}") | |
| return resp.json()["parquet_files"][0] | |
| def query_remote_model(text): | |
| payload = { | |
| "inputs": text, | |
| "parameters": {} | |
| } | |
| response = client.post(API_URL, headers=headers, json=payload) | |
| pred = response.json() | |
| return pred[0]["generated_text"] | |
| def query_local_model(text): | |
| pred = llama(text, temperature=0.1, max_tokens=500) | |
| return pred["choices"][0]["text"] | |
| def text2sql(dataset_name, query_input): | |
| print(f"start text2sql for {dataset_name}") | |
| try: | |
| first_parquet = get_first_parquet(dataset_name) | |
| except Exception as e: | |
| return f"❌ Dataset does not exist or is not supported {e}" | |
| first_parquet_url = first_parquet["url"] | |
| print(first_parquet_url) | |
| con = duckdb.connect() | |
| con.execute("INSTALL 'httpfs'; LOAD httpfs;") | |
| con.execute(f"CREATE TABLE data as SELECT * FROM '{first_parquet_url}' LIMIT 1;") | |
| result = con.sql("SELECT sql FROM duckdb_tables() where table_name ='data';").df() | |
| con.close() | |
| ddl_create = result.iloc[0,0] | |
| text = f"""### Instruction: | |
| Your task is to generate valid duckdb SQL to answer the following question. | |
| ### Input: | |
| Here is the database schema that the SQL query will run on: | |
| {ddl_create} | |
| ### Question: | |
| {query_input} | |
| ### Response (use duckdb shorthand if possible): | |
| """ | |
| print(text) | |
| # sql_output = query_remote_model(text) | |
| sql_output = query_local_model(text) | |
| return sql_output | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Talk to your dataset") | |
| gr.Markdown("This space shows how to talk to your datasets: Get a brief description, create SQL queries, and get results.") | |
| gr.Markdown("Generate SQL queries'") | |
| dataset_name = gr.Textbox("sksayril/medicine-info", label="Dataset Name") | |
| query_input = gr.Textbox("How many rows there are?", label="Ask something about your data") | |
| btn = gr.Button("Generate SQL") | |
| query_output = gr.Textbox(label="Output SQL", interactive= False) | |
| btn.click(text2sql, inputs=[dataset_name, query_input], outputs=query_output) | |
| demo.launch() | |