Spaces:
Running
Running
fixes for speed
Browse files
app.py
CHANGED
|
@@ -369,6 +369,26 @@ def get_words(text):
|
|
| 369 |
SOURCE_WORDS_CACHE[text] = words
|
| 370 |
return words
|
| 371 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
def search_motions_two_actions(action1, action2):
|
| 373 |
"""Enhanced substring search with synonym expansion"""
|
| 374 |
# Create a cache key for this query
|
|
@@ -498,7 +518,7 @@ def search_gpt_semantic(action, top_k=1):
|
|
| 498 |
return result
|
| 499 |
|
| 500 |
def search_motions_combined(action1, action2, n_motions):
|
| 501 |
-
"""
|
| 502 |
# Create a cache key for this query
|
| 503 |
cache_key = f"{action1.lower().strip()}_{action2.lower().strip()}_{n_motions}"
|
| 504 |
|
|
@@ -506,49 +526,67 @@ def search_motions_combined(action1, action2, n_motions):
|
|
| 506 |
if cache_key in SEARCH_RESULTS_CACHE:
|
| 507 |
return SEARCH_RESULTS_CACHE[cache_key]
|
| 508 |
|
| 509 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 510 |
string_results = search_motions_two_actions(action1, action2)
|
| 511 |
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 519 |
else:
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
|
|
|
|
|
|
| 526 |
|
| 527 |
-
#
|
| 528 |
-
|
| 529 |
-
used_combo = {m["motion_combo"] for m in final_list}
|
| 530 |
|
| 531 |
for item, score in zip(sem_list, sem_score_list):
|
| 532 |
if item["motion_combo"] not in used_combo:
|
| 533 |
-
|
| 534 |
-
|
| 535 |
used_combo.add(item["motion_combo"])
|
| 536 |
-
if len(
|
| 537 |
break
|
| 538 |
|
| 539 |
# Still short? Fill with random
|
| 540 |
-
if len(
|
| 541 |
-
needed2 = n_motions - len(
|
| 542 |
rnd = get_random_motions(needed2)
|
| 543 |
for r in rnd:
|
| 544 |
if r["motion_combo"] not in used_combo:
|
| 545 |
-
|
| 546 |
-
|
| 547 |
used_combo.add(r["motion_combo"])
|
| 548 |
-
if len(
|
| 549 |
break
|
| 550 |
-
|
| 551 |
-
|
| 552 |
|
| 553 |
# Cache the results
|
| 554 |
SEARCH_RESULTS_CACHE[cache_key] = result
|
|
@@ -556,9 +594,21 @@ def search_motions_combined(action1, action2, n_motions):
|
|
| 556 |
return result
|
| 557 |
|
| 558 |
def safe_video_update(motion_data, semantic_score, visible=True):
|
| 559 |
-
"""Optimized video update
|
| 560 |
-
|
| 561 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 562 |
|
| 563 |
return [
|
| 564 |
gr.update(value=url, visible=visible)
|
|
@@ -610,8 +660,20 @@ def update_videos(motions, n_visible, semantic_scores):
|
|
| 610 |
if i < len(motions[:n_visible]):
|
| 611 |
motion = motions[i]
|
| 612 |
score = semantic_scores[i]
|
| 613 |
-
|
| 614 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 615 |
updates.extend([
|
| 616 |
gr.update(value=motion["motion_combo"], visible=True),
|
| 617 |
gr.update(value=motion["motion_a"], visible=True),
|
|
@@ -909,7 +971,7 @@ def prefetch_videos():
|
|
| 909 |
threading.Thread(target=prefetch_videos).start()
|
| 910 |
|
| 911 |
# Print ready message
|
| 912 |
-
print("Demo ready! Optimized code running with synonym-enhanced TF-IDF similarity.")
|
| 913 |
|
| 914 |
# Launch the demo
|
| 915 |
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
|
|
|
|
| 369 |
SOURCE_WORDS_CACHE[text] = words
|
| 370 |
return words
|
| 371 |
|
| 372 |
+
def exact_string_search(action1, action2):
|
| 373 |
+
"""Search for exact string matches first"""
|
| 374 |
+
exact_results = []
|
| 375 |
+
|
| 376 |
+
action1_lower = action1.lower().strip()
|
| 377 |
+
action2_lower = action2.lower().strip()
|
| 378 |
+
|
| 379 |
+
for k, v in motion_dict.items():
|
| 380 |
+
source_lower = v["source_annot"].lower()
|
| 381 |
+
target_lower = v["target_annot"].lower()
|
| 382 |
+
|
| 383 |
+
# Check for exact matches in either annotation
|
| 384 |
+
cond1 = action1_lower in source_lower or action1_lower in target_lower
|
| 385 |
+
cond2 = action2_lower in source_lower or action2_lower in target_lower
|
| 386 |
+
|
| 387 |
+
if cond1 and cond2:
|
| 388 |
+
exact_results.append(v)
|
| 389 |
+
|
| 390 |
+
return exact_results
|
| 391 |
+
|
| 392 |
def search_motions_two_actions(action1, action2):
|
| 393 |
"""Enhanced substring search with synonym expansion"""
|
| 394 |
# Create a cache key for this query
|
|
|
|
| 518 |
return result
|
| 519 |
|
| 520 |
def search_motions_combined(action1, action2, n_motions):
|
| 521 |
+
"""Improved combined search approach that prioritizes exact matches"""
|
| 522 |
# Create a cache key for this query
|
| 523 |
cache_key = f"{action1.lower().strip()}_{action2.lower().strip()}_{n_motions}"
|
| 524 |
|
|
|
|
| 526 |
if cache_key in SEARCH_RESULTS_CACHE:
|
| 527 |
return SEARCH_RESULTS_CACHE[cache_key]
|
| 528 |
|
| 529 |
+
# 1. First try exact string matches
|
| 530 |
+
exact_results = exact_string_search(action1, action2)
|
| 531 |
+
|
| 532 |
+
if len(exact_results) >= n_motions:
|
| 533 |
+
# If we have enough exact matches, return them
|
| 534 |
+
result = (random.sample(exact_results, n_motions), ['EXACT']*n_motions)
|
| 535 |
+
SEARCH_RESULTS_CACHE[cache_key] = result
|
| 536 |
+
return result
|
| 537 |
+
|
| 538 |
+
# 2. If not enough exact matches, try the enhanced substring search with synonyms
|
| 539 |
string_results = search_motions_two_actions(action1, action2)
|
| 540 |
|
| 541 |
+
# Filter out any results that are already in exact_results
|
| 542 |
+
string_results = [r for r in string_results if r not in exact_results]
|
| 543 |
+
|
| 544 |
+
# Combine exact_results with string_results
|
| 545 |
+
combined_results = list(exact_results)
|
| 546 |
+
combined_scores = ['EXACT'] * len(exact_results)
|
| 547 |
+
|
| 548 |
+
if len(combined_results) + len(string_results) >= n_motions:
|
| 549 |
+
# If we have enough combined results, use them
|
| 550 |
+
needed = n_motions - len(combined_results)
|
| 551 |
+
if needed > 0:
|
| 552 |
+
combined_results.extend(random.sample(string_results, needed))
|
| 553 |
+
combined_scores.extend(['SUBSTR'] * needed)
|
| 554 |
+
|
| 555 |
+
result = (combined_results[:n_motions], combined_scores[:n_motions])
|
| 556 |
else:
|
| 557 |
+
# 3. If still not enough, add all substring matches and then use semantic search
|
| 558 |
+
combined_results.extend(string_results)
|
| 559 |
+
combined_scores.extend(['SUBSTR'] * len(string_results))
|
| 560 |
+
|
| 561 |
+
# Use semantic search for the remaining needed motions
|
| 562 |
+
needed = n_motions - len(combined_results)
|
| 563 |
+
if needed > 0:
|
| 564 |
+
sem_list, sem_score_list = search_motions_semantic(action1, action2, top_k=2*needed)
|
| 565 |
|
| 566 |
+
# Filter out duplicates
|
| 567 |
+
used_combo = {m["motion_combo"] for m in combined_results}
|
|
|
|
| 568 |
|
| 569 |
for item, score in zip(sem_list, sem_score_list):
|
| 570 |
if item["motion_combo"] not in used_combo:
|
| 571 |
+
combined_results.append(item)
|
| 572 |
+
combined_scores.append(score)
|
| 573 |
used_combo.add(item["motion_combo"])
|
| 574 |
+
if len(combined_results) == n_motions:
|
| 575 |
break
|
| 576 |
|
| 577 |
# Still short? Fill with random
|
| 578 |
+
if len(combined_results) < n_motions:
|
| 579 |
+
needed2 = n_motions - len(combined_results)
|
| 580 |
rnd = get_random_motions(needed2)
|
| 581 |
for r in rnd:
|
| 582 |
if r["motion_combo"] not in used_combo:
|
| 583 |
+
combined_results.append(r)
|
| 584 |
+
combined_scores.append('RANDOM')
|
| 585 |
used_combo.add(r["motion_combo"])
|
| 586 |
+
if len(combined_results) == n_motions:
|
| 587 |
break
|
| 588 |
+
|
| 589 |
+
result = (combined_results[:n_motions], combined_scores[:n_motions])
|
| 590 |
|
| 591 |
# Cache the results
|
| 592 |
SEARCH_RESULTS_CACHE[cache_key] = result
|
|
|
|
| 594 |
return result
|
| 595 |
|
| 596 |
def safe_video_update(motion_data, semantic_score, visible=True):
|
| 597 |
+
"""Optimized video update with match type display"""
|
| 598 |
+
|
| 599 |
+
# Prepare the annotation text based on the match type
|
| 600 |
+
if semantic_score == 'EXACT':
|
| 601 |
+
match_info = "Exact Match"
|
| 602 |
+
elif semantic_score == 'SUBSTR':
|
| 603 |
+
match_info = "Substring Match"
|
| 604 |
+
elif semantic_score == 'RANDOM':
|
| 605 |
+
match_info = "Random Result"
|
| 606 |
+
else:
|
| 607 |
+
# For semantic matches, round to 2 decimal places
|
| 608 |
+
ssim = str(round(semantic_score, 2)) if semantic_score != 'NA' else ''
|
| 609 |
+
match_info = f"Semantic Match (sim: {ssim})"
|
| 610 |
+
|
| 611 |
+
actual_annot = f"{motion_data['annotation']} | {match_info}"
|
| 612 |
|
| 613 |
return [
|
| 614 |
gr.update(value=url, visible=visible)
|
|
|
|
| 660 |
if i < len(motions[:n_visible]):
|
| 661 |
motion = motions[i]
|
| 662 |
score = semantic_scores[i]
|
| 663 |
+
|
| 664 |
+
# Handle different score types
|
| 665 |
+
if score == 'EXACT':
|
| 666 |
+
match_info = "Exact Match"
|
| 667 |
+
elif score == 'SUBSTR':
|
| 668 |
+
match_info = "Substring Match"
|
| 669 |
+
elif score == 'RANDOM':
|
| 670 |
+
match_info = "Random Result"
|
| 671 |
+
else:
|
| 672 |
+
# For semantic matches, round to 2 decimal places
|
| 673 |
+
ssim = str(round(score, 2)) if score != 'NA' else ''
|
| 674 |
+
match_info = f"Semantic Match (sim: {ssim})"
|
| 675 |
+
|
| 676 |
+
actual_annot = f"{motion['annotation']} | {match_info}"
|
| 677 |
updates.extend([
|
| 678 |
gr.update(value=motion["motion_combo"], visible=True),
|
| 679 |
gr.update(value=motion["motion_a"], visible=True),
|
|
|
|
| 971 |
threading.Thread(target=prefetch_videos).start()
|
| 972 |
|
| 973 |
# Print ready message
|
| 974 |
+
print("Demo ready! Optimized code running with exact matching prioritized over synonym-enhanced TF-IDF similarity.")
|
| 975 |
|
| 976 |
# Launch the demo
|
| 977 |
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
|