import gradio as gr import random import json import re import os import numpy as np from collections import Counter from sklearn.feature_extraction.text import TfidfVectorizer import functools from concurrent.futures import ThreadPoolExecutor import threading import nltk from nltk.corpus import wordnet from nltk.stem import WordNetLemmatizer # Add at the beginning of your script, after imports import os import nltk # Get the current directory current_dir = os.getcwd() print(f"Current directory: {current_dir}") # Point NLTK to the data directories in your current directory nltk_data_path = os.path.join(current_dir, "nltk_data") print(f"Setting NLTK data path to: {nltk_data_path}") # Add the path to NLTK's search paths nltk.data.path.insert(0, nltk_data_path) # Insert at position 0 to search here first # Print all paths for debugging print(f"NLTK will search in: {nltk.data.path}") # Try to load the taggers from your local directory try: # Try to directly load the tagger model from nltk.tag.perceptron import PerceptronTagger tagger = PerceptronTagger() print("Successfully loaded PerceptronTagger") except Exception as e: print(f"Error loading tagger: {e}") # nltk.download('averaged_perceptron_tagger_eng') # Add the header constant at the top of your file WEBSITE = ("""

SINC: Spatial Composition of 3D Human Motions for Simultaneous Action Generation

ICCV 2023

Nikos Athanasiou*1, Mathis Petrovich*1,2,
Michael J. Black1, Gül Varol2

1MPI for Intelligent Systems, Tübingen, Germany
2LIGM, École des Ponts, Univ Gustave Eiffel, CNRS, France

Download SINC synthetic data, if you want to train your models with spatial composition from AMASS.
The data you are exploring in this demo are the data created using the code to compose motions from AMASS in our repo.**

""") # Action examples ACTION_EXAMPLES = [ "walk forward on balance beam", "walk counterclockwise", "sit on chair", "kick a ball", "jump up", "hold on to rail with right hand", "pick up an object", 'wave with the right hand', 'throw a ball', 'bow' ] ACTION_EXAMPLES_SIMULTANEOUS = [ "walk forward on balance beam while holding rail with right hand", "walk counterclockwise while waving with left hand", "sit on chair and wave with left hand", "pick up an object while bowing", "walk forward on balance beam while waving left hand" ] # Global cache for expensive operations SIMILARITY_CACHE = {} SEARCH_RESULTS_CACHE = {} GPT_SIMILARITY_CACHE = {} GPT_SEARCH_RESULTS_CACHE = {} SYNONYM_CACHE = {} MAX_WORKERS = 4 # For ThreadPoolExecutor # Cache for TF-IDF TFIDF_VECTORIZER = None TFIDF_MATRIX = None MOTION_TEXTS = [] MOTION_KEYS = [] GPT_TEXTS = [] GPT_KEYS = [] # Initialize lemmatizer lemmatizer = WordNetLemmatizer() # Movement action word mappings - manually defined synonyms for common motion words ACTION_SYNONYMS = { 'walk': ['move', 'stroll', 'pace', 'stride', 'wander', 'stalk', 'amble', 'saunter', 'tread', 'step'], 'run': ['sprint', 'jog', 'dash', 'race', 'bolt', 'scamper', 'rush', 'hurry'], 'jump': ['leap', 'hop', 'spring', 'bounce', 'vault', 'bound', 'skip'], 'turn': ['rotate', 'spin', 'twist', 'revolve', 'pivot', 'swivel', 'whirl'], 'wave': ['signal', 'gesture', 'flap', 'flutter', 'waggle', 'shake', 'brandish'], 'sit': ['perch', 'recline', 'rest', 'squat'], 'stand': ['rise', 'upright', 'erect', 'vertical'], 'throw': ['toss', 'hurl', 'fling', 'chuck', 'lob', 'pitch', 'cast'], 'grab': ['grasp', 'clutch', 'seize', 'grip', 'hold', 'take', 'catch'], 'pick': ['lift', 'raise', 'hoist', 'elevate'], 'kick': ['boot', 'punt', 'strike'], 'bow': ['bend', 'stoop', 'incline', 'nod'], 'dance': ['twirl', 'sway', 'shimmy', 'boogie', 'groove', 'swing'], 'balance': ['steady', 'stabilize', 'poise', 'equilibrium'], 'forward': ['ahead', 'onward', 'frontward', 'forth'], 'backward': ['back', 'rearward', 'reverse', 'retreat'], 'clockwise': ['right', 'rightward', 'rightways'], 'counterclockwise': ['left', 'leftward', 'leftways', 'anticlockwise'], 'hold': ['grip', 'grasp', 'clutch', 'clasp', 'clench', 'possess'] } # Build reverse mapping for faster lookups REVERSE_SYNONYMS = {} for word, synonyms in ACTION_SYNONYMS.items(): REVERSE_SYNONYMS[word] = word # A word is its own synonym for synonym in synonyms: REVERSE_SYNONYMS[synonym] = word def get_wordnet_pos(word): """Map POS tag to first character used by WordNet lemmatizer with fallback for errors""" try: tag = nltk.tag.pos_tag([word])[0][1][0].upper() tag_dict = {"J": wordnet.ADJ, "N": wordnet.NOUN, "V": wordnet.VERB, "R": wordnet.ADV} return tag_dict.get(tag, wordnet.NOUN) except Exception as e: print(f"POS tagging error for word '{word}': {e}") # Default to NOUN as fallback return wordnet.NOUN def get_synonyms(word): """Get all synonyms for a word using WordNet and our custom action mappings""" if word in SYNONYM_CACHE: return SYNONYM_CACHE[word] synonyms = set() # Add the word itself synonyms.add(word) # Check our custom action mappings first (faster and more domain-specific) if word in REVERSE_SYNONYMS: canonical_word = REVERSE_SYNONYMS[word] synonyms.add(canonical_word) synonyms.update(ACTION_SYNONYMS.get(canonical_word, [])) # Then check WordNet (more general but can be noisy) try: word_lemma = lemmatizer.lemmatize(word, get_wordnet_pos(word)) for syn in wordnet.synsets(word_lemma): for lemma in syn.lemmas(): synonyms.add(lemma.name().lower().replace('_', ' ')) except Exception as e: print(f"Error getting WordNet synonyms for '{word}': {e}") SYNONYM_CACHE[word] = synonyms return synonyms def expand_query_with_synonyms(query): """Expand a query with synonyms for each term""" try: words = nltk.word_tokenize(query.lower()) except Exception as e: print(f"Tokenization error: {e}") # Fallback to simple split if tokenization fails words = query.lower().split() expanded_terms = [] for word in words: if len(word) > 2: # Only expand words with length > 2 to avoid stop words synonyms = get_synonyms(word) expanded_terms.extend(synonyms) else: expanded_terms.append(word) # Join back into a space-separated string return ' '.join(expanded_terms) def create_example_buttons(textbox, loftexts): """Creates clickable buttons for example actions""" return gr.Examples( examples=loftexts, inputs=textbox, label="Example Actions" ) # Load motion data def load_json_dict(file_path): with open(file_path, "r") as f: return json.load(f) # Load data at startup print("Loading motion data...") motion_dict = load_json_dict("for_website_v4.json") motion_dict = { key: value for key, value in motion_dict.items() if "guide forward walk" not in value['source_annot'].lower() and "guide forward walk" not in value['target_annot'].lower() } print("Loading GPT labels...") GPT_LABELS_LIST = load_json_dict('gpt3-labels-list.json') GPT_LABELS_LIST = {k: v[2] for k, v in GPT_LABELS_LIST.items()} # TF-IDF based similarity implementation with synonym expansion def initialize_tfidf(): """Initialize TF-IDF vectorizer and precompute matrices""" global TFIDF_VECTORIZER, TFIDF_MATRIX, MOTION_TEXTS, MOTION_KEYS print("Initializing TF-IDF vectorizer...") # Extract text descriptions from the motion dictionary for TF-IDF MOTION_TEXTS = [] MOTION_KEYS = [] for key, motion in motion_dict.items(): # Combine source and target annotations text = f"{motion['source_annot']} {motion['target_annot']}".lower() MOTION_TEXTS.append(text) MOTION_KEYS.append(key) # Initialize the TF-IDF vectorizer TFIDF_VECTORIZER = TfidfVectorizer( lowercase=True, stop_words='english', ngram_range=(1, 2), # Include bigrams for better matching max_features=20000, # Increased to accommodate synonym expansions min_df=1 # Lower threshold to catch less frequent terms ) # Fit and transform to get TF-IDF vectors TFIDF_MATRIX = TFIDF_VECTORIZER.fit_transform(MOTION_TEXTS) print(f"TF-IDF matrix created with shape {TFIDF_MATRIX.shape}") # Also create GPT labels matrix initialize_gpt_tfidf() def initialize_gpt_tfidf(): """Initialize TF-IDF for GPT labels""" global GPT_TEXTS, GPT_KEYS print("Initializing TF-IDF for GPT labels...") GPT_TEXTS = [] GPT_KEYS = [] for key, text in GPT_LABELS_LIST.items(): GPT_TEXTS.append(text.lower()) GPT_KEYS.append(key) def compute_tfidf_similarity(query, top_k=10): """Compute similarity using TF-IDF vectors with synonym expansion""" global TFIDF_VECTORIZER, TFIDF_MATRIX, MOTION_TEXTS, MOTION_KEYS # Original query for cache key original_query = query.lower().strip() # Check cache first cache_key = f"tfidf_{original_query}_{top_k}" if cache_key in SIMILARITY_CACHE: return SIMILARITY_CACHE[cache_key] try: # Expand query with synonyms expanded_query = expand_query_with_synonyms(original_query) # Transform query to TF-IDF space query_vector = TFIDF_VECTORIZER.transform([expanded_query]) # Compute cosine similarity between query and all texts # Using matrix multiplication for sparse matrices similarities = (query_vector @ TFIDF_MATRIX.T).toarray().flatten() # Get indices of top_k highest similarity scores top_indices = np.argsort(similarities)[-top_k:][::-1] # Get the corresponding entries and scores top_entries = [motion_dict[MOTION_KEYS[idx]] for idx in top_indices] top_scores = [similarities[idx] for idx in top_indices] result = (top_entries, top_scores) except Exception as e: print(f"Error in TF-IDF similarity computation: {e}") # Fallback to random motions if TF-IDF fails result = (get_random_motions(top_k), ['NA']*top_k) SIMILARITY_CACHE[cache_key] = result return result def compute_gpt_tfidf_similarity(query): """Compute similarity between query and GPT labels using TF-IDF with synonym expansion""" global TFIDF_VECTORIZER, GPT_TEXTS, GPT_KEYS # Original query for cache key original_query = query.lower().strip() # Check cache first cache_key = f"gpt_tfidf_{original_query}" if cache_key in GPT_SIMILARITY_CACHE: return GPT_SIMILARITY_CACHE[cache_key] try: # Expand query with synonyms expanded_query = expand_query_with_synonyms(original_query) # Transform query and all GPT texts to TF-IDF space query_vector = TFIDF_VECTORIZER.transform([expanded_query]) gpt_vectors = TFIDF_VECTORIZER.transform(GPT_TEXTS) # Compute cosine similarity between query and all GPT texts similarities = (query_vector @ gpt_vectors.T).toarray().flatten() # Get the index of highest similarity score best_idx = np.argmax(similarities) best_key = GPT_KEYS[best_idx] best_text = GPT_LABELS_LIST[best_key] best_sim = similarities[best_idx] result = (best_key, best_text, best_sim) except Exception as e: print(f"Error in GPT TF-IDF similarity computation: {e}") # Fallback to first GPT label if computation fails if GPT_KEYS: result = (GPT_KEYS[0], GPT_LABELS_LIST[GPT_KEYS[0]], 0.5) else: result = (None, None, 0) GPT_SIMILARITY_CACHE[cache_key] = result return result # Precompile regex pattern WORD_PATTERN = re.compile(r'\b\w+\b') # Cache the word lists to avoid repeated tokenization SOURCE_WORDS_CACHE = {} TARGET_WORDS_CACHE = {} def get_words(text): """Tokenize text and cache the results""" if text in SOURCE_WORDS_CACHE: return SOURCE_WORDS_CACHE[text] words = set(WORD_PATTERN.findall(text.lower())) SOURCE_WORDS_CACHE[text] = words return words def exact_string_search(action1, action2): """Search for exact string matches first""" exact_results = [] action1_lower = action1.lower().strip() action2_lower = action2.lower().strip() for k, v in motion_dict.items(): source_lower = v["source_annot"].lower() target_lower = v["target_annot"].lower() # Check for exact matches in either annotation cond1 = action1_lower in source_lower or action1_lower in target_lower cond2 = action2_lower in source_lower or action2_lower in target_lower if cond1 and cond2: exact_results.append(v) return exact_results def search_motions_two_actions(action1, action2): """Enhanced substring search with synonym expansion""" # Create a cache key for this query cache_key = f"{action1.lower().strip()}_{action2.lower().strip()}" # Check if we already have results for this query if cache_key in SEARCH_RESULTS_CACHE: return SEARCH_RESULTS_CACHE[cache_key] try: # Convert actions into lists of words action1_words = set(action1.lower().strip().split()) action2_words = set(action2.lower().strip().split()) # Expand with synonyms expanded_action1_words = set() for word in action1_words: if len(word) > 2: # Only consider words longer than 2 chars expanded_action1_words.update(get_synonyms(word)) else: expanded_action1_words.add(word) expanded_action2_words = set() for word in action2_words: if len(word) > 2: # Only consider words longer than 2 chars expanded_action2_words.update(get_synonyms(word)) else: expanded_action2_words.add(word) results = [] for k, v in motion_dict.items(): # Get or compute tokenized words from cache if v["source_annot"] not in SOURCE_WORDS_CACHE: SOURCE_WORDS_CACHE[v["source_annot"]] = set(WORD_PATTERN.findall(v["source_annot"].lower())) if v["target_annot"] not in TARGET_WORDS_CACHE: TARGET_WORDS_CACHE[v["target_annot"]] = set(WORD_PATTERN.findall(v["target_annot"].lower())) source_words = SOURCE_WORDS_CACHE[v["source_annot"]] target_words = TARGET_WORDS_CACHE[v["target_annot"]] # For each word in action1, check if any of its synonyms match cond1 = False if action1_words: # Only check if action1 has words matches = 0 for word in action1_words: word_matches = False if len(word) <= 2: # For short words, just check exact match if word in source_words or word in target_words: word_matches = True else: # For longer words, check all synonyms for syn in get_synonyms(word): if syn in source_words or syn in target_words: word_matches = True break if word_matches: matches += 1 # Consider a match if at least 70% of words (or their synonyms) are found cond1 = (matches / len(action1_words)) >= 0.7 if action1_words else True else: cond1 = True # For each word in action2, check if any of its synonyms match cond2 = False if action2_words: # Only check if action2 has words matches = 0 for word in action2_words: word_matches = False if len(word) <= 2: # For short words, just check exact match if word in source_words or word in target_words: word_matches = True else: # For longer words, check all synonyms for syn in get_synonyms(word): if syn in source_words or syn in target_words: word_matches = True break if word_matches: matches += 1 # Consider a match if at least 70% of words (or their synonyms) are found cond2 = (matches / len(action2_words)) >= 0.7 if action2_words else True else: cond2 = True if cond1 and cond2: results.append(v) except Exception as e: print(f"Error in substring search: {e}") results = [] # Cache the results SEARCH_RESULTS_CACHE[cache_key] = results return results def search_motions_semantic(action1, action2, top_k=10): """Semantic search using TF-IDF similarity with synonym expansion""" query_text = (action1.strip() + " " + action2.strip()).strip().lower() if not query_text: return [], [] # Check cache first cache_key = f"{query_text}_{top_k}" if cache_key in SEARCH_RESULTS_CACHE: return SEARCH_RESULTS_CACHE[cache_key] # Use TF-IDF similarity return compute_tfidf_similarity(query_text, top_k) def get_random_motions(n_motions): all_vals = list(motion_dict.values()) return random.sample(all_vals, min(n_motions, len(all_vals))) def search_gpt_semantic(action, top_k=1): """Search GPT labels using TF-IDF similarity with synonym expansion""" query_text = action.strip().lower() if not query_text: return None, None, None # Check cache first if query_text in GPT_SEARCH_RESULTS_CACHE: return GPT_SEARCH_RESULTS_CACHE[query_text] # Use TF-IDF similarity for GPT labels result = compute_gpt_tfidf_similarity(query_text) GPT_SEARCH_RESULTS_CACHE[query_text] = result return result def search_motions_combined(action1, action2, n_motions): """Improved combined search approach that prioritizes exact matches""" # Create a cache key for this query cache_key = f"{action1.lower().strip()}_{action2.lower().strip()}_{n_motions}" # Check if we already have results for this query if cache_key in SEARCH_RESULTS_CACHE: return SEARCH_RESULTS_CACHE[cache_key] # 1. First try exact string matches exact_results = exact_string_search(action1, action2) if len(exact_results) >= n_motions: # If we have enough exact matches, return them result = (random.sample(exact_results, n_motions), ['EXACT']*n_motions) SEARCH_RESULTS_CACHE[cache_key] = result return result # 2. If not enough exact matches, try the enhanced substring search with synonyms string_results = search_motions_two_actions(action1, action2) # Filter out any results that are already in exact_results string_results = [r for r in string_results if r not in exact_results] # Combine exact_results with string_results combined_results = list(exact_results) combined_scores = ['EXACT'] * len(exact_results) if len(combined_results) + len(string_results) >= n_motions: # If we have enough combined results, use them needed = n_motions - len(combined_results) if needed > 0: combined_results.extend(random.sample(string_results, needed)) combined_scores.extend(['SUBSTR'] * needed) result = (combined_results[:n_motions], combined_scores[:n_motions]) else: # 3. If still not enough, add all substring matches and then use semantic search combined_results.extend(string_results) combined_scores.extend(['SUBSTR'] * len(string_results)) # Use semantic search for the remaining needed motions needed = n_motions - len(combined_results) if needed > 0: sem_list, sem_score_list = search_motions_semantic(action1, action2, top_k=2*needed) # Filter out duplicates used_combo = {m["motion_combo"] for m in combined_results} for item, score in zip(sem_list, sem_score_list): if item["motion_combo"] not in used_combo: combined_results.append(item) combined_scores.append(score) used_combo.add(item["motion_combo"]) if len(combined_results) == n_motions: break # Still short? Fill with random if len(combined_results) < n_motions: needed2 = n_motions - len(combined_results) rnd = get_random_motions(needed2) for r in rnd: if r["motion_combo"] not in used_combo: combined_results.append(r) combined_scores.append('RANDOM') used_combo.add(r["motion_combo"]) if len(combined_results) == n_motions: break result = (combined_results[:n_motions], combined_scores[:n_motions]) # Cache the results SEARCH_RESULTS_CACHE[cache_key] = result return result def safe_video_update(motion_data, semantic_score, visible=True): """Optimized video update with match type display""" # Prepare the annotation text based on the match type if semantic_score == 'EXACT': match_info = "Exact Match" elif semantic_score == 'SUBSTR': match_info = "Substring Match" elif semantic_score == 'RANDOM': match_info = "Random Result" else: # For semantic matches, round to 2 decimal places ssim = str(round(semantic_score, 2)) if semantic_score != 'NA' else '' match_info = f"Semantic Match (sim: {ssim})" actual_annot = f"{motion_data['annotation']} | {match_info}" return [ gr.update(value=url, visible=visible) for url in (motion_data["motion_combo"], motion_data["motion_a"], motion_data["motion_b"]) ] + [gr.update(value=actual_annot, visible=visible)] def update_videos(motions, n_visible, semantic_scores): """Update video components with motion data, with parallel video processing""" updates = [] if not motions: updates.append(gr.update(value='incompatible combination', visible=True)) remaining = 7 for _ in range(remaining): updates.extend([ gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False) ]) else: try: # Prepare all updates in parallel using ThreadPoolExecutor with ThreadPoolExecutor(max_workers=min(8, n_visible)) as executor: # Submit all video update tasks future_updates = [ executor.submit(safe_video_update, motion, semantic_scores[jj], True) for jj, motion in enumerate(motions[:n_visible]) ] # Collect all updates as they complete for future in future_updates: updates.extend(future.result()) remaining = 8 - len(motions[:n_visible]) for _ in range(remaining): updates.extend([ gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False) ]) except Exception as e: print(f"Error updating videos: {e}") # Fallback if parallel processing fails updates = [] for i in range(8): if i < len(motions[:n_visible]): motion = motions[i] score = semantic_scores[i] # Handle different score types if score == 'EXACT': match_info = "Exact Match" elif score == 'SUBSTR': match_info = "Substring Match" elif score == 'RANDOM': match_info = "Random Result" else: # For semantic matches, round to 2 decimal places ssim = str(round(score, 2)) if score != 'NA' else '' match_info = f"Semantic Match (sim: {ssim})" actual_annot = f"{motion['annotation']} | {match_info}" updates.extend([ gr.update(value=motion["motion_combo"], visible=True), gr.update(value=motion["motion_a"], visible=True), gr.update(value=motion["motion_b"], visible=True), gr.update(value=actual_annot, visible=True) ]) else: updates.extend([ gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False) ]) return updates def parse_gpt_labels(text): """Parse GPT labels from text""" if text.startswith("Answer: "): text = text[len("Answer: "):] # Remove the "Answer: " prefix return text.split("\n") # Split by newline def failure_update(message, n_motions=None): """Create UI updates for failure cases""" updates = [] # For the first motion: hide videos and display the message in the text box updates.append(gr.update(value=None, visible=False)) # video_combo for motion 1 updates.append(gr.update(value=None, visible=False)) # video_a for motion 1 updates.append(gr.update(value=None, visible=False)) # video_b for motion 1 updates.append(gr.update(value=message, visible=True)) # annotation text for motion 1 # For the remaining 7 motions, hide all components for _ in range(7): updates.extend([ gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False), gr.update(value=None, visible=False) ]) return updates def handle_interaction(action1, action2, n_motions): """Handle user interaction with caching for faster responses""" # Create a cache key for the entire interaction cache_key = f"interaction_{action1.strip().lower()}_{action2.strip().lower()}_{n_motions}" # Check if we have cached results for this interaction if cache_key in SEARCH_RESULTS_CACHE: return SEARCH_RESULTS_CACHE[cache_key] try: if not action1.strip() and not action2.strip(): # Both empty => random motions = get_random_motions(n_motions) result = update_videos(motions, n_motions, ['NA'] * len(motions)) else: # Process GPT labels in parallel with ThreadPoolExecutor(max_workers=2) as executor: # Submit tasks for processing both actions in parallel if action1 in GPT_LABELS_LIST: future_act1 = executor.submit(lambda: parse_gpt_labels(GPT_LABELS_LIST[action1])) else: future_act1 = executor.submit(search_gpt_semantic, action1, 1) if action2 in GPT_LABELS_LIST: future_act2 = executor.submit(lambda: parse_gpt_labels(GPT_LABELS_LIST[action2])) else: future_act2 = executor.submit(search_gpt_semantic, action2, 1) # Get results try: if action1 in GPT_LABELS_LIST: gpt_act1 = future_act1.result() else: best_key, best_text, best_sim = future_act1.result() if not best_text: result = failure_update("Action 1 not recognized.") SEARCH_RESULTS_CACHE[cache_key] = result return result gpt_act1 = parse_gpt_labels(best_text) if action2 in GPT_LABELS_LIST: gpt_act2 = future_act2.result() else: best_key, best_text, best_sim = future_act2.result() if not best_text: result = failure_update("Action 2 not recognized.") SEARCH_RESULTS_CACHE[cache_key] = result return result gpt_act2 = parse_gpt_labels(best_text) except Exception as e: print(f"Error processing GPT labels: {e}") result = failure_update("Error processing actions. Please try again.") SEARCH_RESULTS_CACHE[cache_key] = result return result # Check for conflicts if bool(set(gpt_act1) & set(gpt_act2)): failure_message = "Incompatible action pair. Please select actions that are not conflicting." result = failure_update(failure_message) else: motions, sem_mot_scores = search_motions_combined(action1, action2, n_motions) result = update_videos(motions, n_motions, sem_mot_scores) except Exception as e: print(f"Error in handle_interaction: {e}") result = failure_update("An error occurred. Please try again.") # Cache the result SEARCH_RESULTS_CACHE[cache_key] = result return result # Custom CSS CUSTOM_CSS = """ button.compact-button { width: auto !important; /* Let the button shrink to fit text */ min-width: unset !important; /* Remove any forced min-width */ padding: 4px 8px !important; font-size: 20px !important; line-height: 1 !important; } """ # Build the Gradio UI with gr.Blocks(css=CUSTOM_CSS) as demo: gr.HTML(WEBSITE) with gr.Tabs(): with gr.Tab("SINC-Synth exploration"): with gr.Row(): with gr.Column(): with gr.Row(): with gr.Column(): action1_textbox = gr.Textbox( label="Action 1", placeholder="Select an action or type the first action, e.g. 'walk'", ) create_example_buttons(action1_textbox, ACTION_EXAMPLES[:5]) with gr.Column(): action2_textbox = gr.Textbox( label="Action 2", placeholder="Select an action or type the second action, e.g. 'wave'" ) create_example_buttons(action2_textbox, ACTION_EXAMPLES[5:]) with gr.Column(): n_motions_radio = gr.Radio( choices=[2, 4, 6, 8], label="Number of motions to be shown from the SINC-Synthetic data", value=2, show_label=True, container=True, ) with gr.Row(): search_button = gr.Button("Search", elem_classes=["compact-button"]) random_button = gr.Button("Random", elem_classes=["compact-button"]) # up to 8 motions motion_components = [] videos_per_row = 2 max_motions = 8 num_rows = (max_motions + videos_per_row - 1) // videos_per_row # Ceiling division for i in range(num_rows): with gr.Row(): for j in range(videos_per_row): motion_index = i * videos_per_row + j if motion_index >= max_motions: break with gr.Column(): video_combo = gr.Video( label=f"Motion {motion_index + 1}", visible=False, width=480, height=384, loop=True ) with gr.Row(): video_a = gr.Video( label="Motion A", visible=False, width=320, height=256, loop=True ) video_b = gr.Video( label="Motion B", visible=False, width=320, height=256, loop=True ) text = gr.Textbox( visible=False, interactive=False ) motion_components.extend([video_combo, video_a, video_b, text]) search_button.click( fn=handle_interaction, inputs=[action1_textbox, action2_textbox, n_motions_radio], outputs=motion_components ) random_button.click( fn=lambda n: handle_interaction("", "", n), inputs=[n_motions_radio], outputs=motion_components ) gr.HTML(("""

**Our data in the official paper are using on the fly compositions, which means than are not computed and filtered offline. This is a minimally processed version of ~124k motions ranging between 3-7 seconds.

Made with ❤️ by Nikos Athanasiou

""") ) with gr.Tab("Simultaneous Motion Generation with SINC model"): gr.HTML("

Motion Generation from Text [TBD. Currenly under construction.]

") with gr.Row(): text_input_gen = gr.Textbox( label="Motion Description", placeholder="Describe the motion, e.g. 'A person walking forward while waving'" ) create_example_buttons(text_input_gen, ACTION_EXAMPLES_SIMULTANEOUS) generate_button = gr.Button("Generate Motion", elem_classes=["compact-button"]) with gr.Row(): output_video = gr.Video( label="Generated Motion", visible=True, width=320, height=180 ) def generate_motion(text): # Placeholder function - replace with actual model inference # Return None instead of a string path to avoid schema conversion issues return None generate_button.click( fn=generate_motion, inputs=[text_input_gen], outputs=[output_video] ) # Initialize TF-IDF at startup initialize_tfidf() # Precompute synonyms for common action words print("Precomputing synonyms for common action words...") for action in ACTION_SYNONYMS: get_synonyms(action) # Video prefetching def prefetch_videos(): """Prefetch some common videos to warm up the cache""" print("Prefetching common videos...") try: # Get a small set of common videos to prefetch random_motions = get_random_motions(4) common_actions = [("walk", "wave"), ("sit", "bow"), ("jump", "throw")] with ThreadPoolExecutor(max_workers=8) as executor: futures = [] # Add random motions to prefetch list for motion in random_motions: futures.append(executor.submit( lambda m: (m["motion_combo"], m["motion_a"], m["motion_b"]), motion )) # Add common action combinations for act1, act2 in common_actions: motions, _ = search_motions_combined(act1, act2, 2) if motions: for motion in motions: futures.append(executor.submit( lambda m: (m["motion_combo"], m["motion_a"], m["motion_b"]), motion )) # Wait for all prefetch operations to complete for future in futures: future.result() print("Video prefetching complete") except Exception as e: print(f"Error in video prefetching: {e}") # Start prefetching in a separate thread to not block startup threading.Thread(target=prefetch_videos).start() # Print ready message print("Demo ready! Optimized code running with exact matching prioritized over synonym-enhanced TF-IDF similarity.") # Launch the demo demo.launch(server_name="0.0.0.0", server_port=7860, share=False)