Spaces:
Running
Running
| import sys,os | |
| sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
| import numpy as np | |
| import argparse | |
| import torch | |
| import requests | |
| from tqdm import tqdm | |
| from whisper.model import Whisper, ModelDimensions | |
| from whisper.audio import load_audio, pad_or_trim, log_mel_spectrogram | |
| def load_model(path, device) -> Whisper: | |
| checkpoint = torch.load(path, map_location="cpu") | |
| dims = ModelDimensions(**checkpoint["dims"]) | |
| # print(dims) | |
| model = Whisper(dims) | |
| del model.decoder | |
| cut = len(model.encoder.blocks) // 4 | |
| cut = -1 * cut | |
| del model.encoder.blocks[cut:] | |
| model.load_state_dict(checkpoint["model_state_dict"], strict=False) | |
| model.eval() | |
| if not (device == "cpu"): | |
| model.half() | |
| model.to(device) | |
| # torch.save({ | |
| # 'dims': checkpoint["dims"], | |
| # 'model_state_dict': model.state_dict(), | |
| # }, "large-v2.pt") | |
| return model | |
| def check_and_download_model(): | |
| temp_dir = "/tmp" | |
| model_path = os.path.join(temp_dir, "large-v2.pt") | |
| if os.path.exists(model_path): | |
| return f"モデルは既に存在します: {model_path}" | |
| url = "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt" | |
| try: | |
| response = requests.get(url, stream=True) | |
| response.raise_for_status() | |
| total_size = int(response.headers.get('content-length', 0)) | |
| with open(model_path, 'wb') as f, tqdm( | |
| desc=model_path, | |
| total=total_size, | |
| unit='iB', | |
| unit_scale=True, | |
| unit_divisor=1024, | |
| ) as pbar: | |
| for data in response.iter_content(chunk_size=1024): | |
| size = f.write(data) | |
| pbar.update(size) | |
| return f"モデルのダウンロードが完了しました: {model_path}" | |
| except Exception as e: | |
| return f"エラーが発生しました: {e}" | |
| def pred_ppg(whisper: Whisper, wavPath, ppgPath, device): | |
| audio = load_audio(wavPath) | |
| audln = audio.shape[0] | |
| ppg_a = [] | |
| idx_s = 0 | |
| while (idx_s + 15 * 16000 < audln): | |
| short = audio[idx_s:idx_s + 15 * 16000] | |
| idx_s = idx_s + 15 * 16000 | |
| ppgln = 15 * 16000 // 320 | |
| # short = pad_or_trim(short) | |
| mel = log_mel_spectrogram(short).to(device) | |
| if not (device == "cpu"): | |
| mel = mel.half() | |
| with torch.no_grad(): | |
| mel = mel + torch.randn_like(mel) * 0.1 | |
| ppg = whisper.encoder(mel.unsqueeze(0)).squeeze().data.cpu().float().numpy() | |
| ppg = ppg[:ppgln,] # [length, dim=1024] | |
| ppg_a.extend(ppg) | |
| if (idx_s < audln): | |
| short = audio[idx_s:audln] | |
| ppgln = (audln - idx_s) // 320 | |
| # short = pad_or_trim(short) | |
| mel = log_mel_spectrogram(short).to(device) | |
| if not (device == "cpu"): | |
| mel = mel.half() | |
| with torch.no_grad(): | |
| mel = mel + torch.randn_like(mel) * 0.1 | |
| ppg = whisper.encoder(mel.unsqueeze(0)).squeeze().data.cpu().float().numpy() | |
| ppg = ppg[:ppgln,] # [length, dim=1024] | |
| ppg_a.extend(ppg) | |
| np.save(ppgPath, ppg_a, allow_pickle=False) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("-w", "--wav", help="wav", dest="wav", required=True) | |
| parser.add_argument("-p", "--ppg", help="ppg", dest="ppg", required=True) | |
| args = parser.parse_args() | |
| print(args.wav) | |
| print(args.ppg) | |
| wavPath = args.wav | |
| ppgPath = args.ppg | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| _ =check_and_download_model() | |
| whisper = load_model("/tmp/large-v2.pt", device) | |
| pred_ppg(whisper, wavPath, ppgPath, device) | |