Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import pandas as pd | |
| import json | |
| import os | |
| import plotly.express as px | |
| import plotly.graph_objects as go | |
| from plotly.subplots import make_subplots | |
| import numpy as np | |
| from pathlib import Path | |
| import glob | |
| import requests | |
| from io import StringIO | |
| import zipfile | |
| import tempfile | |
| import shutil | |
| import time | |
| from datetime import datetime, timezone | |
| import yaml | |
| # Set page config | |
| st.set_page_config( | |
| page_title="Attention Analysis Results Explorer", | |
| page_icon="🔍", | |
| layout="wide", | |
| initial_sidebar_state="expanded" | |
| ) | |
| # Custom CSS for better styling | |
| st.markdown(""" | |
| <style> | |
| .main-header { | |
| font-size: 2.5rem; | |
| font-weight: bold; | |
| color: #1f77b4; | |
| text-align: center; | |
| margin-bottom: 2rem; | |
| } | |
| .section-header { | |
| font-size: 1.5rem; | |
| font-weight: bold; | |
| color: #ff7f0e; | |
| margin-top: 2rem; | |
| margin-bottom: 1rem; | |
| } | |
| .metric-container { | |
| background-color: #f0f2f6; | |
| padding: 1rem; | |
| border-radius: 0.5rem; | |
| margin: 0.5rem 0; | |
| } | |
| .stSelectbox > div > div { | |
| background-color: white; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| class AttentionResultsExplorer: | |
| def __init__(self, github_repo="ACMCMC/attention", use_cache=True): | |
| self.github_repo = github_repo | |
| self.use_cache = use_cache | |
| self.cache_dir = Path(tempfile.gettempdir()) / "attention_results_cache" | |
| self.base_path = self.cache_dir | |
| # Initialize cache directory | |
| if not self.cache_dir.exists(): | |
| self.cache_dir.mkdir(parents=True, exist_ok=True) | |
| # Get available languages from GitHub without downloading | |
| self.available_languages = self._get_available_languages_from_github() | |
| self.relation_types = None | |
| def _download_experiment_config(self): | |
| """Download and parse the experiment_config.yaml file from GitHub""" | |
| config_path = self.cache_dir / "experiment_config.yaml" | |
| # Check if we have a cached version and use_cache is enabled | |
| if config_path.exists() and self.use_cache: | |
| try: | |
| with open(config_path, 'r', encoding='utf-8') as f: | |
| return yaml.safe_load(f) | |
| except Exception as e: | |
| st.warning(f"Could not load cached config, downloading fresh: {str(e)}") | |
| # Download from GitHub | |
| config_url = f"https://raw.githubusercontent.com/{self.github_repo}/refs/heads/master/experiment_config.yaml" | |
| response = self._make_github_request(config_url, "experiment configuration file") | |
| if response is None: | |
| # Try to load from cache as fallback | |
| if config_path.exists(): | |
| try: | |
| with open(config_path, 'r', encoding='utf-8') as f: | |
| return yaml.safe_load(f) | |
| except Exception: | |
| pass | |
| return None | |
| try: | |
| config_content = response.text | |
| # Save to cache | |
| with open(config_path, 'w', encoding='utf-8') as f: | |
| f.write(config_content) | |
| # Parse and return | |
| return yaml.safe_load(StringIO(config_content)) | |
| except Exception as e: | |
| st.error(f"Could not parse experiment configuration: {str(e)}") | |
| return None | |
| def _get_available_languages_from_github(self): | |
| """Get available languages from experiment config file""" | |
| config = self._download_experiment_config() | |
| if config is None: | |
| # Fallback to directory-based discovery | |
| return self._get_available_languages_from_directories() | |
| try: | |
| languages = list(config.get('languages', {}).keys()) | |
| return sorted(languages) | |
| except Exception as e: | |
| st.warning(f"Could not parse languages from config: {str(e)}") | |
| # Fallback to directory-based discovery | |
| return self._get_available_languages_from_directories() | |
| def _get_available_languages_from_directories(self): | |
| """Fallback method: Get available languages from GitHub API directory listing""" | |
| api_url = f"https://api.github.com/repos/{self.github_repo}/contents" | |
| response = self._make_github_request(api_url, "available languages") | |
| if response is None: | |
| # Rate limit hit or other error, fallback to local cache | |
| return self._get_available_languages_local() | |
| try: | |
| contents = response.json() | |
| result_dirs = [item['name'] for item in contents | |
| if item['type'] == 'dir' and item['name'].startswith('results_')] | |
| languages = [d.replace("results_", "") for d in result_dirs] | |
| return sorted(languages) | |
| except Exception as e: | |
| st.warning(f"Could not parse language list from GitHub: {str(e)}") | |
| # Fallback to local cache if available | |
| return self._get_available_languages_local() | |
| def _get_models_for_language(self, language): | |
| """Get all models for a specific language from the experiment config""" | |
| config = self._download_experiment_config() | |
| if config is None: | |
| return [] | |
| try: | |
| # Get language-specific models | |
| language_models = config.get('languages', {}).get(language, {}).get('models', []) | |
| # Get multilingual models | |
| multilingual_models = config.get('multilingual_models', []) | |
| # Combine both lists | |
| all_models = language_models + multilingual_models | |
| return sorted(list(set(all_models))) # Remove duplicates and sort | |
| except Exception as e: | |
| st.warning(f"Could not get models for {language}: {str(e)}") | |
| return [] | |
| def _get_first_language_model_pair(self): | |
| """Get the first language-model pair from the experiment config for configuration discovery""" | |
| config = self._download_experiment_config() | |
| if config is None: | |
| return None, None | |
| try: | |
| languages = config.get('languages', {}) | |
| multilingual_models = config.get('multilingual_models', []) | |
| # Find first language with models | |
| for language, lang_config in languages.items(): | |
| models = lang_config.get('models', []) | |
| if models: | |
| return language, models[0] | |
| # If no language-specific models, use first language with first multilingual model | |
| if multilingual_models and languages: | |
| first_language = list(languages.keys())[0] | |
| return first_language, multilingual_models[0] | |
| return None, None | |
| except Exception as e: | |
| st.warning(f"Could not find language-model pair: {str(e)}") | |
| return None, None | |
| def _get_available_languages_local(self): | |
| """Get available languages from local cache""" | |
| if not self.base_path.exists(): | |
| return [] | |
| result_dirs = [d.name for d in self.base_path.iterdir() | |
| if d.is_dir() and d.name.startswith("results_")] | |
| languages = [d.replace("results_", "") for d in result_dirs] | |
| return sorted(languages) | |
| def _ensure_specific_data_downloaded(self, language, config, model): | |
| """Download specific files for a language/config/model combination if not cached""" | |
| base_path = f"results_{language}/{config}/{model}" | |
| local_path = self.base_path / f"results_{language}" / config / model | |
| # Check if we already have this specific combination cached | |
| if local_path.exists() and self.use_cache: | |
| # Quick check if essential files exist | |
| metadata_path = local_path / "metadata" / "metadata.json" | |
| if metadata_path.exists(): | |
| return # Already have the data | |
| with st.spinner(f"📥 Downloading data for {language.upper()}/{config}/{model}..."): | |
| try: | |
| self._download_specific_model_data(language, config, model) | |
| st.success(f"✅ Downloaded {language.upper()}/{model} data!") | |
| except Exception as e: | |
| st.error(f"❌ Failed to download specific data: {str(e)}") | |
| raise | |
| def _download_specific_model_data(self, language, config, model): | |
| """Download only the specific model data needed""" | |
| base_remote_path = f"results_{language}/{config}/{model}" | |
| # List of essential directories to download for a model | |
| essential_dirs = ["metadata", "uas_scores", "number_of_heads_matching", "variability", "figures"] | |
| for dir_name in essential_dirs: | |
| remote_path = f"{base_remote_path}/{dir_name}" | |
| try: | |
| self._download_directory_targeted(dir_name, remote_path, language, config, model) | |
| except Exception as e: | |
| st.warning(f"Could not download {dir_name} for {model}: {str(e)}") | |
| def _download_directory_targeted(self, dir_name, remote_path, language, config, model): | |
| """Download a specific directory for a model""" | |
| api_url = f"https://api.github.com/repos/{self.github_repo}/contents/{remote_path}" | |
| response = self._make_github_request(api_url, f"directory {dir_name}", silent_404=True) | |
| if response is None: | |
| return # Rate limit, 404, or other error | |
| try: | |
| contents = response.json() | |
| # Create local directory | |
| local_dir = self.base_path / f"results_{language}" / config / model / dir_name | |
| local_dir.mkdir(parents=True, exist_ok=True) | |
| # Download all files in this directory | |
| for item in contents: | |
| if item['type'] == 'file': | |
| self._download_file(item, local_dir) | |
| except Exception as e: | |
| st.warning(f"Could not download directory {dir_name}: {str(e)}") | |
| def _get_available_configs_from_github(self, language): | |
| """Get available configurations for a language from GitHub""" | |
| api_url = f"https://api.github.com/repos/{self.github_repo}/contents/results_{language}" | |
| response = self._make_github_request(api_url, f"configurations for {language}") | |
| if response is None: | |
| return [] | |
| try: | |
| contents = response.json() | |
| configs = [item['name'] for item in contents if item['type'] == 'dir'] | |
| return sorted(configs) | |
| except Exception as e: | |
| st.warning(f"Could not parse configurations for {language}: {str(e)}") | |
| return [] | |
| def _discover_config_parameters(self, language=None): | |
| """Dynamically discover configuration parameters from available configs | |
| Now uses the first language-model pair from experiment config to discover | |
| valid configuration parameters, since configurations are consistent across | |
| all language-model combinations. | |
| """ | |
| try: | |
| # Get the first language-model pair from experiment config | |
| if language is None: | |
| language, model = self._get_first_language_model_pair() | |
| if language is None or model is None: | |
| st.warning("Could not find any language-model pairs in experiment config") | |
| return {} | |
| st.info(f"🔍 Discovering configurations using {language.upper()}/{model} (configurations are consistent across all languages and models)") | |
| else: | |
| # If language is specified, try to get first model for that language | |
| models = self._get_models_for_language(language) | |
| if not models: | |
| st.warning(f"No models found for language {language}") | |
| return {} | |
| model = models[0] | |
| available_configs = self._get_experimental_configs(language) | |
| if not available_configs: | |
| return {} | |
| # Parse all configurations to extract unique parameters | |
| all_params = set() | |
| param_values = {} | |
| for config in available_configs: | |
| params = self._parse_config_params(config) | |
| for param, value in params.items(): | |
| all_params.add(param) | |
| if param not in param_values: | |
| param_values[param] = set() | |
| param_values[param].add(value) | |
| # Convert sets to sorted lists for consistent UI | |
| return {param: sorted(list(values)) for param, values in param_values.items()} | |
| except Exception as e: | |
| st.warning(f"Could not discover configuration parameters: {str(e)}") | |
| return {} | |
| def _build_config_from_params(self, param_dict): | |
| """Build configuration string from parameter dictionary""" | |
| config_parts = [] | |
| for param, value in sorted(param_dict.items()): | |
| config_parts.append(f"{param}_{value}") | |
| return "+".join(config_parts) | |
| def _find_best_matching_config(self, language, target_params): | |
| """Find the configuration that best matches the target parameters""" | |
| available_configs = self._get_experimental_configs(language) | |
| best_match = None | |
| best_score = -1 | |
| for config in available_configs: | |
| config_params = self._parse_config_params(config) | |
| # Calculate match score | |
| score = 0 | |
| total_params = len(target_params) | |
| for param, target_value in target_params.items(): | |
| if param in config_params and config_params[param] == target_value: | |
| score += 1 | |
| # Prefer configs with exact parameter count | |
| if len(config_params) == total_params: | |
| score += 0.5 | |
| if score > best_score: | |
| best_score = score | |
| best_match = config | |
| return best_match, best_score == len(target_params) | |
| def _download_repository(self): | |
| """Download repository data from GitHub""" | |
| st.info("🔄 Downloading results data from GitHub... This may take a moment.") | |
| # GitHub API to get the repository contents | |
| api_url = f"https://api.github.com/repos/{self.github_repo}/contents" | |
| try: | |
| # Get list of result directories | |
| response = requests.get(api_url) | |
| response.raise_for_status() | |
| contents = response.json() | |
| result_dirs = [item['name'] for item in contents | |
| if item['type'] == 'dir' and item['name'].startswith('results_')] | |
| st.write(f"Found {len(result_dirs)} result directories: {', '.join(result_dirs)}") | |
| # Download each result directory | |
| progress_bar = st.progress(0) | |
| for i, result_dir in enumerate(result_dirs): | |
| st.write(f"Downloading {result_dir}...") | |
| self._download_directory(result_dir) | |
| progress_bar.progress((i + 1) / len(result_dirs)) | |
| st.success("✅ Download completed!") | |
| except Exception as e: | |
| st.error(f"❌ Error downloading repository: {str(e)}") | |
| st.error("Please check the repository URL and your internet connection.") | |
| raise | |
| def _parse_config_params(self, config_name): | |
| """Parse configuration parameters into a dictionary""" | |
| parts = config_name.split('+') | |
| params = {} | |
| for part in parts: | |
| if '_' in part: | |
| key_parts = part.split('_') | |
| if len(key_parts) >= 2: | |
| key = '_'.join(key_parts[:-1]) | |
| value = key_parts[-1] | |
| params[key] = value == 'True' | |
| return params | |
| def _download_directory(self, dir_name, path=""): | |
| """Recursively download a directory from GitHub""" | |
| url = f"https://api.github.com/repos/{self.github_repo}/contents/{path}{dir_name}" | |
| try: | |
| response = requests.get(url) | |
| response.raise_for_status() | |
| contents = response.json() | |
| local_dir = self.cache_dir / path / dir_name | |
| local_dir.mkdir(parents=True, exist_ok=True) | |
| for item in contents: | |
| if item['type'] == 'file': | |
| self._download_file(item, local_dir) | |
| elif item['type'] == 'dir': | |
| self._download_directory(item['name'], f"{path}{dir_name}/") | |
| except Exception as e: | |
| st.warning(f"Could not download {dir_name}: {str(e)}") | |
| def _download_file(self, file_info, local_dir): | |
| """Download a single file from GitHub""" | |
| try: | |
| # Use the rate limit handling for file downloads too | |
| file_response = self._make_github_request(file_info['download_url'], f"file {file_info['name']}") | |
| if file_response is None: | |
| return # Rate limit or other error | |
| # Save to local cache | |
| local_file = local_dir / file_info['name'] | |
| # Handle different file types | |
| if file_info['name'].endswith(('.csv', '.json')): | |
| with open(local_file, 'w', encoding='utf-8') as f: | |
| f.write(file_response.text) | |
| else: # Binary files like PDFs | |
| with open(local_file, 'wb') as f: | |
| f.write(file_response.content) | |
| except Exception as e: | |
| st.warning(f"Could not download file {file_info['name']}: {str(e)}") | |
| def _get_available_languages(self): | |
| """Get all available language directories""" | |
| return self.available_languages | |
| def _get_experimental_configs(self, language): | |
| """Get all experimental configurations for a language from GitHub API""" | |
| api_url = f"https://api.github.com/repos/{self.github_repo}/contents/results_{language}" | |
| response = self._make_github_request(api_url, f"experimental configs for {language}") | |
| if response is not None: | |
| try: | |
| contents = response.json() | |
| configs = [item['name'] for item in contents if item['type'] == 'dir'] | |
| return sorted(configs) | |
| except Exception as e: | |
| st.warning(f"Could not parse experimental configs for {language}: {str(e)}") | |
| # Fallback to local cache if available | |
| lang_dir = self.base_path / f"results_{language}" | |
| if lang_dir.exists(): | |
| configs = [d.name for d in lang_dir.iterdir() if d.is_dir()] | |
| return sorted(configs) | |
| return [] | |
| def _find_matching_config(self, language, target_params): | |
| """Find the first matching configuration from target parameters""" | |
| return self._find_best_matching_config(language, target_params) | |
| def _get_models(self, language, config): | |
| """Get all models for a language and configuration from experiment config""" | |
| # First try to get models from experiment config | |
| models = self._get_models_for_language(language) | |
| if models: | |
| return models | |
| # Fallback to GitHub API directory listing if config unavailable | |
| api_url = f"https://api.github.com/repos/{self.github_repo}/contents/results_{language}/{config}" | |
| response = self._make_github_request(api_url, f"models for {language}/{config}") | |
| if response is not None: | |
| try: | |
| contents = response.json() | |
| models = [item['name'] for item in contents if item['type'] == 'dir'] | |
| return sorted(models) | |
| except Exception as e: | |
| st.warning(f"Could not parse models for {language}/{config}: {str(e)}") | |
| # Final fallback to local cache if available | |
| config_dir = self.base_path / f"results_{language}" / config | |
| if config_dir.exists(): | |
| models = [d.name for d in config_dir.iterdir() if d.is_dir()] | |
| return sorted(models) | |
| return [] | |
| def _parse_config_name(self, config_name): | |
| """Parse configuration name into readable format""" | |
| parts = config_name.split('+') | |
| config_dict = {} | |
| for part in parts: | |
| if '_' in part: | |
| key, value = part.split('_', 1) | |
| config_dict[key.replace('_', ' ').title()] = value | |
| return config_dict | |
| def _load_metadata(self, language, config, model): | |
| """Load metadata for a specific combination""" | |
| # Ensure we have the specific data downloaded | |
| self._ensure_specific_data_downloaded(language, config, model) | |
| metadata_path = self.base_path / f"results_{language}" / config / model / "metadata" / "metadata.json" | |
| if metadata_path.exists(): | |
| with open(metadata_path, 'r') as f: | |
| return json.load(f) | |
| return None | |
| def _load_uas_scores(self, language, config, model): | |
| """Load UAS scores data""" | |
| # Ensure we have the specific data downloaded | |
| self._ensure_specific_data_downloaded(language, config, model) | |
| uas_dir = self.base_path / f"results_{language}" / config / model / "uas_scores" | |
| if not uas_dir.exists(): | |
| return {} | |
| uas_data = {} | |
| csv_files = list(uas_dir.glob("uas_*.csv")) | |
| if csv_files: | |
| with st.spinner("Loading UAS scores data..."): | |
| progress_bar = st.progress(0) | |
| status_text = st.empty() | |
| for i, csv_file in enumerate(csv_files): | |
| relation = csv_file.stem.replace("uas_", "") | |
| status_text.text(f"Loading UAS data: {relation}") | |
| try: | |
| df = pd.read_csv(csv_file, index_col=0) | |
| uas_data[relation] = df | |
| except Exception as e: | |
| st.warning(f"Could not load {csv_file.name}: {e}") | |
| progress_bar.progress((i + 1) / len(csv_files)) | |
| time.sleep(0.01) # Small delay for smoother progress | |
| progress_bar.empty() | |
| status_text.empty() | |
| return uas_data | |
| def _load_head_matching(self, language, config, model): | |
| """Load head matching data""" | |
| # Ensure we have the specific data downloaded | |
| self._ensure_specific_data_downloaded(language, config, model) | |
| heads_dir = self.base_path / f"results_{language}" / config / model / "number_of_heads_matching" | |
| if not heads_dir.exists(): | |
| return {} | |
| heads_data = {} | |
| csv_files = list(heads_dir.glob("heads_matching_*.csv")) | |
| if csv_files: | |
| with st.spinner("Loading head matching data..."): | |
| progress_bar = st.progress(0) | |
| status_text = st.empty() | |
| for i, csv_file in enumerate(csv_files): | |
| relation = csv_file.stem.replace("heads_matching_", "").replace(f"_{model}", "") | |
| status_text.text(f"Loading head matching data: {relation}") | |
| try: | |
| df = pd.read_csv(csv_file, index_col=0) | |
| heads_data[relation] = df | |
| except Exception as e: | |
| st.warning(f"Could not load {csv_file.name}: {e}") | |
| progress_bar.progress((i + 1) / len(csv_files)) | |
| time.sleep(0.01) # Small delay for smoother progress | |
| progress_bar.empty() | |
| status_text.empty() | |
| return heads_data | |
| def _load_variability(self, language, config, model): | |
| """Load variability data""" | |
| # Ensure we have the specific data downloaded | |
| self._ensure_specific_data_downloaded(language, config, model) | |
| var_path = self.base_path / f"results_{language}" / config / model / "variability" / "variability_list.csv" | |
| if var_path.exists(): | |
| try: | |
| return pd.read_csv(var_path, index_col=0) | |
| except Exception as e: | |
| st.warning(f"Could not load variability data: {e}") | |
| return None | |
| def _get_available_figures(self, language, config, model): | |
| """Get all available figure files""" | |
| # Ensure we have the specific data downloaded | |
| self._ensure_specific_data_downloaded(language, config, model) | |
| figures_dir = self.base_path / f"results_{language}" / config / model / "figures" | |
| if not figures_dir.exists(): | |
| return [] | |
| return list(figures_dir.glob("*.pdf")) | |
| def _handle_rate_limit_error(self, response): | |
| """Handle GitHub API rate limit errors with detailed user feedback""" | |
| if response.status_code in (403, 429): | |
| # Check if it's a rate limit error | |
| if 'rate limit' in response.text.lower() or 'api rate limit' in response.text.lower(): | |
| # Extract rate limit information from headers | |
| remaining = response.headers.get('x-ratelimit-remaining', 'unknown') | |
| reset_timestamp = response.headers.get('x-ratelimit-reset') | |
| limit = response.headers.get('x-ratelimit-limit', 'unknown') | |
| # Calculate reset time | |
| reset_time_str = "unknown" | |
| if reset_timestamp: | |
| try: | |
| reset_time = datetime.fromtimestamp(int(reset_timestamp), tz=timezone.utc) | |
| reset_time_str = reset_time.strftime("%Y-%m-%d %H:%M:%S UTC") | |
| # Calculate time until reset | |
| now = datetime.now(timezone.utc) | |
| time_until_reset = reset_time - now | |
| minutes_until_reset = int(time_until_reset.total_seconds() / 60) | |
| if minutes_until_reset > 0: | |
| reset_time_str += f" (in {minutes_until_reset} minutes)" | |
| except (ValueError, TypeError): | |
| pass | |
| # Display comprehensive rate limit information | |
| st.error("🚫 **GitHub API Rate Limit Exceeded**") | |
| with st.expander("📊 Rate Limit Details", expanded=True): | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| st.metric("Requests Remaining", remaining) | |
| st.metric("Rate Limit", limit) | |
| with col2: | |
| st.metric("Reset Time", reset_time_str) | |
| if reset_timestamp: | |
| try: | |
| reset_time = datetime.fromtimestamp(int(reset_timestamp), tz=timezone.utc) | |
| now = datetime.now(timezone.utc) | |
| time_until_reset = reset_time - now | |
| if time_until_reset.total_seconds() > 0: | |
| st.metric("Time Until Reset", f"{int(time_until_reset.total_seconds() / 60)} minutes") | |
| except (ValueError, TypeError): | |
| pass | |
| return True # Indicates rate limit error was handled | |
| return False # Not a rate limit error | |
| def _make_github_request(self, url, description="GitHub API request", silent_404=False): | |
| """Make a GitHub API request with rate limit handling""" | |
| try: | |
| # Add GitHub token if available | |
| headers = {} | |
| github_token = os.environ.get('GITHUB_TOKEN') | |
| if github_token: | |
| headers['Authorization'] = f'token {github_token}' | |
| response = requests.get(url, headers=headers) | |
| # Check for rate limit before raising for status | |
| if self._handle_rate_limit_error(response): | |
| return None # Rate limit handled, return None | |
| # Handle 404 errors silently if requested (for optional directories) | |
| if response.status_code == 404 and silent_404: | |
| return None | |
| response.raise_for_status() | |
| return response | |
| except requests.exceptions.RequestException as e: | |
| if hasattr(e, 'response') and e.response is not None: | |
| # Handle 404 silently if requested | |
| if e.response.status_code == 404 and silent_404: | |
| return None | |
| if not self._handle_rate_limit_error(e.response): | |
| st.warning(f"Request failed for {description}: {str(e)}") | |
| else: | |
| st.warning(f"Network error for {description}: {str(e)}") | |
| return None | |
| def main(): | |
| # Title | |
| st.markdown('<div class="main-header">🔍 Attention Analysis Results Explorer</div>', unsafe_allow_html=True) | |
| # Sidebar for navigation | |
| st.sidebar.title("🔧 Configuration") | |
| # Cache management section | |
| st.sidebar.markdown("### 📁 Data Management") | |
| # Initialize explorer | |
| use_cache = st.sidebar.checkbox("Use cached data", value=True, | |
| help="Use previously downloaded data if available") | |
| if st.sidebar.button("🔄 Clear Cache", help="Clear all cached data"): | |
| # Clear cache and re-download | |
| cache_dir = Path(tempfile.gettempdir()) / "attention_results_cache" | |
| if cache_dir.exists(): | |
| shutil.rmtree(cache_dir) | |
| st.sidebar.success("✅ Cache cleared!") | |
| st.rerun() | |
| # Show cache status | |
| cache_dir = Path(tempfile.gettempdir()) / "attention_results_cache" | |
| if cache_dir.exists(): | |
| # Get more detailed cache information | |
| cached_items = [] | |
| for lang_dir in cache_dir.iterdir(): | |
| if lang_dir.is_dir() and lang_dir.name.startswith("results_"): | |
| lang = lang_dir.name.replace("results_", "") | |
| configs = [d.name for d in lang_dir.iterdir() if d.is_dir()] | |
| if configs: | |
| models_count = 0 | |
| for config_dir in lang_dir.iterdir(): | |
| if config_dir.is_dir(): | |
| models = [d.name for d in config_dir.iterdir() if d.is_dir()] | |
| models_count += len(models) | |
| cached_items.append(f"{lang} ({len(configs)} configs, {models_count} models)") | |
| if cached_items: | |
| st.sidebar.success("✅ **Cached Data:**") | |
| for item in cached_items[:3]: # Show first 3 | |
| st.sidebar.text(f"• {item}") | |
| if len(cached_items) > 3: | |
| st.sidebar.text(f"... and {len(cached_items) - 3} more") | |
| else: | |
| st.sidebar.info("📥 Cache exists but empty") | |
| else: | |
| st.sidebar.info("📥 No cached data") | |
| st.sidebar.markdown("---") | |
| # Initialize explorer with error handling | |
| try: | |
| with st.spinner("🔄 Initializing attention analysis explorer..."): | |
| explorer = AttentionResultsExplorer(use_cache=use_cache) | |
| except Exception as e: | |
| st.error(f"❌ Failed to initialize data explorer: {str(e)}") | |
| st.error("Please check your internet connection and try again.") | |
| # Show some debugging information | |
| with st.expander("🔍 Debugging Information"): | |
| st.code(f"Error details: {str(e)}") | |
| st.markdown("**Possible solutions:**") | |
| st.markdown("- Check your internet connection") | |
| st.markdown("- Try clearing the cache") | |
| st.markdown("- Wait a moment and refresh the page") | |
| return | |
| # Check if any languages are available | |
| if not explorer.available_languages: | |
| st.error("❌ No result data found. Please check the GitHub repository.") | |
| st.markdown("**Expected repository structure:**") | |
| st.markdown("- Repository should contain `results_*` directories") | |
| st.markdown("- Each directory should contain experimental configurations") | |
| return | |
| # Show success message | |
| st.sidebar.success(f"✅ Found {len(explorer.available_languages)} languages: {', '.join(explorer.available_languages)}") | |
| # Language selection | |
| selected_language = st.sidebar.selectbox( | |
| "Select Language", | |
| options=explorer.available_languages, | |
| help="Choose the language dataset to explore" | |
| ) | |
| st.sidebar.markdown("---") | |
| # Configuration selection with dynamic discovery | |
| st.sidebar.markdown("### ⚙️ Experimental Configuration") | |
| # Discover available configuration parameters (optimized to use first language only) | |
| with st.spinner("🔍 Discovering configuration options..."): | |
| config_parameters = explorer._discover_config_parameters() | |
| if not config_parameters: | |
| st.sidebar.error("❌ Could not discover configuration parameters") | |
| st.stop() | |
| # Show discovered parameters | |
| st.sidebar.success(f"✅ Found {len(config_parameters)} configuration parameters") | |
| st.sidebar.info("💡 Configuration options are consistent across all languages - using optimized discovery") | |
| # Create UI elements for each discovered parameter | |
| selected_params = {} | |
| for param_name, possible_values in config_parameters.items(): | |
| # Clean up parameter name for display | |
| display_name = param_name.replace('_', ' ').title() | |
| if len(possible_values) == 2 and set(possible_values) == {True, False}: | |
| # Boolean parameter - use checkbox | |
| default_value = False # Default to False for boolean params | |
| selected_params[param_name] = st.sidebar.checkbox( | |
| display_name, | |
| value=default_value, | |
| help=f"Parameter: {param_name}" | |
| ) | |
| else: | |
| # Multi-value parameter - use selectbox | |
| selected_params[param_name] = st.sidebar.selectbox( | |
| display_name, | |
| options=possible_values, | |
| help=f"Parameter: {param_name}" | |
| ) | |
| # Find the best matching configuration | |
| selected_config, config_exists = explorer._find_matching_config(selected_language, selected_params) | |
| # Show current configuration | |
| st.sidebar.markdown("**Selected Parameters:**") | |
| for param, value in selected_params.items(): | |
| emoji = "✅" if value else "❌" if isinstance(value, bool) else "🔹" | |
| st.sidebar.text(f"{emoji} {param}: {value}") | |
| st.sidebar.markdown("**Matched Configuration:**") | |
| st.sidebar.code(selected_config if selected_config else "No match found", language="text") | |
| # Show configuration status | |
| if config_exists: | |
| st.sidebar.success("✅ Exact configuration match found!") | |
| else: | |
| st.sidebar.warning("⚠️ Using best available match") | |
| st.sidebar.markdown("---") | |
| # Get models for selected language and config | |
| if not selected_config: | |
| st.error("❌ No valid configuration found") | |
| st.info("Please try different parameter combinations.") | |
| st.stop() | |
| models = explorer._get_models(selected_language, selected_config) | |
| if not models: | |
| st.warning(f"❌ No models found for {selected_language}/{selected_config}") | |
| st.info("This configuration may not exist for the selected language. Try adjusting the configuration parameters above.") | |
| st.stop() | |
| # Model selection | |
| selected_model = st.sidebar.selectbox( | |
| "Select Model", | |
| options=models, | |
| help="Choose the model to analyze" | |
| ) | |
| # Main content area | |
| tab1, tab2, tab3, tab4, tab5 = st.tabs([ | |
| "📊 Overview", | |
| "🎯 UAS Scores", | |
| "🧠 Head Matching", | |
| "📈 Variability", | |
| "🖼️ Figures" | |
| ]) | |
| # Tab 1: Overview | |
| with tab1: | |
| st.markdown('<div class="section-header">Experiment Overview</div>', unsafe_allow_html=True) | |
| # Show current configuration in a friendly format | |
| st.markdown("### 🔧 Current Configuration") | |
| config_params = explorer._parse_config_params(selected_config) | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| st.markdown("**Configuration Parameters:**") | |
| for param, value in config_params.items(): | |
| emoji = "✅" if value else "❌" if isinstance(value, bool) else "🔹" | |
| readable_param = param.replace('_', ' ').title() | |
| st.markdown(f"{emoji} **{readable_param}**: {value}") | |
| with col2: | |
| st.markdown("**Selected Parameters vs Actual:**") | |
| for param in selected_params: | |
| selected_val = selected_params[param] | |
| actual_val = config_params.get(param, "N/A") | |
| match_emoji = "✅" if selected_val == actual_val else "⚠️" | |
| st.markdown(f"{match_emoji} **{param}**: {selected_val} → {actual_val}") | |
| st.markdown("**Raw Configuration String:**") | |
| st.code(selected_config, language="text") | |
| st.markdown("---") | |
| # Load metadata | |
| metadata = explorer._load_metadata(selected_language, selected_config, selected_model) | |
| if metadata: | |
| st.markdown("### 📊 Experiment Statistics") | |
| col1, col2, col3, col4 = st.columns(4) | |
| with col1: | |
| st.metric("Total Samples", metadata.get('total_number', 'N/A')) | |
| with col2: | |
| st.metric("Processed Correctly", metadata.get('number_processed_correctly', 'N/A')) | |
| with col3: | |
| st.metric("Errors", metadata.get('number_errored', 'N/A')) | |
| with col4: | |
| success_rate = (metadata.get('number_processed_correctly', 0) / | |
| metadata.get('total_number', 1)) * 100 if metadata.get('total_number') else 0 | |
| st.metric("Success Rate", f"{success_rate:.1f}%") | |
| if metadata.get('random_seed'): | |
| st.markdown(f"**Random Seed:** {metadata.get('random_seed')}") | |
| if metadata.get('errored_phrases'): | |
| with st.expander("🔍 View Errored Phrase IDs"): | |
| st.write(metadata['errored_phrases']) | |
| else: | |
| st.warning("No metadata available for this configuration.") | |
| # Quick stats about available data | |
| st.markdown("---") | |
| st.markdown('<div class="section-header">Available Data Summary</div>', unsafe_allow_html=True) | |
| # Show loading message since we're now loading on-demand | |
| with st.spinner("Loading data summary..."): | |
| uas_data = explorer._load_uas_scores(selected_language, selected_config, selected_model) | |
| heads_data = explorer._load_head_matching(selected_language, selected_config, selected_model) | |
| variability_data = explorer._load_variability(selected_language, selected_config, selected_model) | |
| figures = explorer._get_available_figures(selected_language, selected_config, selected_model) | |
| col1, col2, col3, col4 = st.columns(4) | |
| with col1: | |
| st.metric("UAS Relations", len(uas_data)) | |
| with col2: | |
| st.metric("Head Matching Relations", len(heads_data)) | |
| with col3: | |
| st.metric("Variability Data", "✓" if variability_data is not None else "✗") | |
| with col4: | |
| st.metric("Figure Files", len(figures)) | |
| # Show what was just downloaded | |
| if uas_data or heads_data or variability_data is not None or figures: | |
| st.success(f"✅ Successfully loaded data for {selected_language.upper()}/{selected_model}") | |
| else: | |
| st.warning("⚠️ No data files found for this configuration") | |
| # Tab 2: UAS Scores | |
| with tab2: | |
| st.markdown('<div class="section-header">UAS (Unlabeled Attachment Score) Analysis</div>', unsafe_allow_html=True) | |
| uas_data = explorer._load_uas_scores(selected_language, selected_config, selected_model) | |
| if uas_data: | |
| # Relation selection | |
| selected_relation = st.selectbox( | |
| "Select Dependency Relation", | |
| options=list(uas_data.keys()), | |
| help="Choose a dependency relation to visualize UAS scores" | |
| ) | |
| if selected_relation and selected_relation in uas_data: | |
| df = uas_data[selected_relation] | |
| # Display the data table | |
| st.markdown("**UAS Scores Matrix (Layer × Head)**") | |
| st.dataframe(df, use_container_width=True) | |
| # Create heatmap | |
| fig = px.imshow( | |
| df.values, | |
| x=[f"Head {i}" for i in df.columns], | |
| y=[f"Layer {i}" for i in df.index], | |
| color_continuous_scale="Viridis", | |
| title=f"UAS Scores Heatmap - {selected_relation}", | |
| labels=dict(color="UAS Score") | |
| ) | |
| fig.update_layout(height=600) | |
| st.plotly_chart(fig, use_container_width=True) | |
| # Statistics | |
| st.markdown("**Statistics**") | |
| col1, col2, col3, col4 = st.columns(4) | |
| with col1: | |
| st.metric("Max Score", f"{df.values.max():.4f}") | |
| with col2: | |
| st.metric("Min Score", f"{df.values.min():.4f}") | |
| with col3: | |
| st.metric("Mean Score", f"{df.values.mean():.4f}") | |
| with col4: | |
| st.metric("Std Dev", f"{df.values.std():.4f}") | |
| else: | |
| st.warning("No UAS score data available for this configuration.") | |
| # Tab 3: Head Matching | |
| with tab3: | |
| st.markdown('<div class="section-header">Attention Head Matching Analysis</div>', unsafe_allow_html=True) | |
| heads_data = explorer._load_head_matching(selected_language, selected_config, selected_model) | |
| if heads_data: | |
| # Relation selection | |
| selected_relation = st.selectbox( | |
| "Select Dependency Relation", | |
| options=list(heads_data.keys()), | |
| help="Choose a dependency relation to visualize head matching patterns", | |
| key="heads_relation" | |
| ) | |
| if selected_relation and selected_relation in heads_data: | |
| df = heads_data[selected_relation] | |
| # Display the data table | |
| st.markdown("**Head Matching Counts Matrix (Layer × Head)**") | |
| st.dataframe(df, use_container_width=True) | |
| # Create heatmap | |
| fig = px.imshow( | |
| df.values, | |
| x=[f"Head {i}" for i in df.columns], | |
| y=[f"Layer {i}" for i in df.index], | |
| color_continuous_scale="Blues", | |
| title=f"Head Matching Counts - {selected_relation}", | |
| labels=dict(color="Match Count") | |
| ) | |
| fig.update_layout(height=600) | |
| st.plotly_chart(fig, use_container_width=True) | |
| # Create bar chart of total matches per layer | |
| layer_totals = df.sum(axis=1) | |
| fig_bar = px.bar( | |
| x=layer_totals.index, | |
| y=layer_totals.values, | |
| title=f"Total Matches per Layer - {selected_relation}", | |
| labels={"x": "Layer", "y": "Total Matches"} | |
| ) | |
| fig_bar.update_layout(height=400) | |
| st.plotly_chart(fig_bar, use_container_width=True) | |
| # Statistics | |
| st.markdown("**Statistics**") | |
| col1, col2, col3, col4 = st.columns(4) | |
| with col1: | |
| st.metric("Total Matches", int(df.values.sum())) | |
| with col2: | |
| st.metric("Max per Cell", int(df.values.max())) | |
| with col3: | |
| best_layer = layer_totals.idxmax() | |
| st.metric("Best Layer", f"Layer {best_layer}") | |
| with col4: | |
| best_head_idx = np.unravel_index(df.values.argmax(), df.values.shape) | |
| st.metric("Best Head", f"L{best_head_idx[0]}-H{best_head_idx[1]}") | |
| else: | |
| st.warning("No head matching data available for this configuration.") | |
| # Tab 4: Variability | |
| with tab4: | |
| st.markdown('<div class="section-header">Attention Variability Analysis</div>', unsafe_allow_html=True) | |
| variability_data = explorer._load_variability(selected_language, selected_config, selected_model) | |
| if variability_data is not None: | |
| # Display the data table | |
| st.markdown("**Variability Matrix (Layer × Head)**") | |
| st.dataframe(variability_data, use_container_width=True) | |
| # Create heatmap | |
| fig = px.imshow( | |
| variability_data.values, | |
| x=[f"Head {i}" for i in variability_data.columns], | |
| y=[f"Layer {i}" for i in variability_data.index], | |
| color_continuous_scale="Reds", | |
| title="Attention Variability Heatmap", | |
| labels=dict(color="Variability Score") | |
| ) | |
| fig.update_layout(height=600) | |
| st.plotly_chart(fig, use_container_width=True) | |
| # Create line plot for variability trends | |
| fig_line = go.Figure() | |
| for col in variability_data.columns: | |
| fig_line.add_trace(go.Scatter( | |
| x=variability_data.index, | |
| y=variability_data[col], | |
| mode='lines+markers', | |
| name=f'Head {col}', | |
| line=dict(width=2) | |
| )) | |
| fig_line.update_layout( | |
| title="Variability Trends Across Layers", | |
| xaxis_title="Layer", | |
| yaxis_title="Variability Score", | |
| height=500 | |
| ) | |
| st.plotly_chart(fig_line, use_container_width=True) | |
| # Statistics | |
| st.markdown("**Statistics**") | |
| col1, col2, col3, col4 = st.columns(4) | |
| with col1: | |
| st.metric("Max Variability", f"{variability_data.values.max():.4f}") | |
| with col2: | |
| st.metric("Min Variability", f"{variability_data.values.min():.4f}") | |
| with col3: | |
| st.metric("Mean Variability", f"{variability_data.values.mean():.4f}") | |
| with col4: | |
| most_variable_idx = np.unravel_index(variability_data.values.argmax(), variability_data.values.shape) | |
| st.metric("Most Variable", f"L{most_variable_idx[0]}-H{most_variable_idx[1]}") | |
| else: | |
| st.warning("No variability data available for this configuration.") | |
| # Tab 5: Figures | |
| with tab5: | |
| st.markdown('<div class="section-header">Generated Figures</div>', unsafe_allow_html=True) | |
| figures = explorer._get_available_figures(selected_language, selected_config, selected_model) | |
| if figures: | |
| st.markdown(f"**Available Figures: {len(figures)}**") | |
| # Group figures by relation type | |
| figure_groups = {} | |
| for fig_path in figures: | |
| # Extract relation from filename | |
| filename = fig_path.stem | |
| relation = filename.replace("heads_matching_", "").replace(f"_{selected_model}", "") | |
| if relation not in figure_groups: | |
| figure_groups[relation] = [] | |
| figure_groups[relation].append(fig_path) | |
| # Select relation to view | |
| selected_fig_relation = st.selectbox( | |
| "Select Relation for Figure View", | |
| options=list(figure_groups.keys()), | |
| help="Choose a dependency relation to view its figure" | |
| ) | |
| if selected_fig_relation and selected_fig_relation in figure_groups: | |
| fig_path = figure_groups[selected_fig_relation][0] | |
| st.markdown(f"**Figure: {fig_path.name}**") | |
| st.markdown(f"**Path:** `{fig_path}`") | |
| # Note about PDF viewing | |
| st.info( | |
| "📄 PDF figures are available in the results directory. " | |
| "Due to Streamlit limitations, PDF files cannot be displayed directly in the browser. " | |
| "You can download or view them locally." | |
| ) | |
| # Provide download link | |
| try: | |
| with open(fig_path, "rb") as file: | |
| st.download_button( | |
| label=f"📥 Download {fig_path.name}", | |
| data=file.read(), | |
| file_name=fig_path.name, | |
| mime="application/pdf" | |
| ) | |
| except Exception as e: | |
| st.error(f"Could not load figure: {e}") | |
| # List all available figures | |
| st.markdown("**All Available Figures:**") | |
| for relation, paths in figure_groups.items(): | |
| with st.expander(f"📊 {relation} ({len(paths)} files)"): | |
| for path in paths: | |
| st.markdown(f"- `{path.name}`") | |
| else: | |
| st.warning("No figures available for this configuration.") | |
| # Footer | |
| st.markdown("---") | |
| # Data source information | |
| col1, col2 = st.columns([2, 1]) | |
| with col1: | |
| st.markdown( | |
| "🔬 **Attention Analysis Results Explorer** | " | |
| f"Currently viewing: {selected_language.upper()} - {selected_model} | " | |
| "Built with Streamlit" | |
| ) | |
| with col2: | |
| st.markdown( | |
| f"📊 **Data Source**: [GitHub Repository](https://github.com/{explorer.github_repo})" | |
| ) | |
| if __name__ == "__main__": | |
| main() | |