Spaces:
Runtime error
Runtime error
Tristan Thrush
commited on
Commit
·
c84ed95
1
Parent(s):
341b6a4
added metric sort orders, added feature to display all metrics at the same time
Browse files- app.py +28 -7
- ascending_metrics.py +10 -0
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -4,16 +4,20 @@ from tqdm.auto import tqdm
|
|
| 4 |
import streamlit as st
|
| 5 |
from huggingface_hub import HfApi, hf_hub_download
|
| 6 |
from huggingface_hub.repocard import metadata_load
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
def make_clickable(model_name):
|
| 10 |
link = "https://huggingface.co/" + model_name
|
| 11 |
return f'<a target="_blank" href="{link}">{model_name}</a>'
|
| 12 |
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
def get_model_ids():
|
| 15 |
api = HfApi()
|
| 16 |
-
# TODO: switch to hf-leaderboards for the final version.
|
| 17 |
models = api.list_models(filter="model-index")
|
| 18 |
model_ids = [x.modelId for x in models]
|
| 19 |
return model_ids
|
|
@@ -101,14 +105,16 @@ dataset = st.sidebar.selectbox(
|
|
| 101 |
dataset_df = dataframe[dataframe.dataset == dataset]
|
| 102 |
dataset_df = dataset_df.dropna(axis="columns", how="all")
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
| 107 |
)
|
| 108 |
|
| 109 |
-
dataset_df = dataset_df.filter(["model_id"
|
| 110 |
-
dataset_df = dataset_df.dropna()
|
| 111 |
-
dataset_df = dataset_df.sort_values(by=metric, ascending=
|
|
|
|
| 112 |
|
| 113 |
st.markdown(
|
| 114 |
"Please click on the model's name to be redirected to its model card which includes documentation and examples on how to use it."
|
|
@@ -120,7 +126,22 @@ dataset_df.index += 1
|
|
| 120 |
|
| 121 |
# turn the model ids into clickable links
|
| 122 |
dataset_df["model_id"] = dataset_df["model_id"].apply(make_clickable)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
|
|
|
| 124 |
table_html = dataset_df.to_html(escape=False)
|
| 125 |
table_html = table_html.replace("<th>", '<th align="left">') # left-align the headers
|
| 126 |
st.write(table_html, unsafe_allow_html=True)
|
|
|
|
| 4 |
import streamlit as st
|
| 5 |
from huggingface_hub import HfApi, hf_hub_download
|
| 6 |
from huggingface_hub.repocard import metadata_load
|
| 7 |
+
from ascending_metrics import ascending_metrics
|
| 8 |
+
import numpy as np
|
| 9 |
|
| 10 |
|
| 11 |
def make_clickable(model_name):
|
| 12 |
link = "https://huggingface.co/" + model_name
|
| 13 |
return f'<a target="_blank" href="{link}">{model_name}</a>'
|
| 14 |
|
| 15 |
+
def make_bold(value):
|
| 16 |
+
return f'<b>{value}</b>'
|
| 17 |
+
|
| 18 |
|
| 19 |
def get_model_ids():
|
| 20 |
api = HfApi()
|
|
|
|
| 21 |
models = api.list_models(filter="model-index")
|
| 22 |
model_ids = [x.modelId for x in models]
|
| 23 |
return model_ids
|
|
|
|
| 105 |
dataset_df = dataframe[dataframe.dataset == dataset]
|
| 106 |
dataset_df = dataset_df.dropna(axis="columns", how="all")
|
| 107 |
|
| 108 |
+
selectable_metrics = list(filter(lambda column: column not in ("model_id", "dataset"), dataset_df.columns))
|
| 109 |
+
metric = st.sidebar.radio(
|
| 110 |
+
"Sorting Metric",
|
| 111 |
+
selectable_metrics,
|
| 112 |
)
|
| 113 |
|
| 114 |
+
dataset_df = dataset_df.filter(["model_id"] + selectable_metrics)
|
| 115 |
+
dataset_df = dataset_df.dropna(thresh=2) # Want at least two non-na values (one for model_id and one for a metric).
|
| 116 |
+
dataset_df = dataset_df.sort_values(by=metric, ascending=metric in ascending_metrics)
|
| 117 |
+
dataset_df = dataset_df.replace(np.nan, '-')
|
| 118 |
|
| 119 |
st.markdown(
|
| 120 |
"Please click on the model's name to be redirected to its model card which includes documentation and examples on how to use it."
|
|
|
|
| 126 |
|
| 127 |
# turn the model ids into clickable links
|
| 128 |
dataset_df["model_id"] = dataset_df["model_id"].apply(make_clickable)
|
| 129 |
+
dataset_df[metric] = dataset_df[metric].apply(make_bold)
|
| 130 |
+
|
| 131 |
+
# Make the selected metric appear right after model names
|
| 132 |
+
cols = dataset_df.columns.tolist()
|
| 133 |
+
cols.remove(metric)
|
| 134 |
+
cols = cols[:1] + [metric] + cols[1:]
|
| 135 |
+
dataset_df = dataset_df[cols]
|
| 136 |
+
|
| 137 |
+
# Highlight selected metric
|
| 138 |
+
def highlight_cols(s):
|
| 139 |
+
huggingface_yellow = "#FFD21E"
|
| 140 |
+
return "background-color: %s" % huggingface_yellow
|
| 141 |
+
|
| 142 |
+
dataset_df = dataset_df.style.applymap(highlight_cols, subset=pd.IndexSlice[:, [metric]])
|
| 143 |
|
| 144 |
+
# Turn table into html
|
| 145 |
table_html = dataset_df.to_html(escape=False)
|
| 146 |
table_html = table_html.replace("<th>", '<th align="left">') # left-align the headers
|
| 147 |
st.write(table_html, unsafe_allow_html=True)
|
ascending_metrics.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ascending_metrics = {
|
| 2 |
+
"wer",
|
| 3 |
+
"cer",
|
| 4 |
+
"loss",
|
| 5 |
+
"mae",
|
| 6 |
+
"mahalanobis",
|
| 7 |
+
"mse",
|
| 8 |
+
"perplexity",
|
| 9 |
+
"ter",
|
| 10 |
+
}
|
requirements.txt
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
pandas
|
| 2 |
tqdm
|
| 3 |
streamlit
|
| 4 |
-
huggingface_hub
|
|
|
|
|
|
| 1 |
pandas
|
| 2 |
tqdm
|
| 3 |
streamlit
|
| 4 |
+
huggingface_hub
|
| 5 |
+
numpy
|