Spaces:
Runtime error
Runtime error
Add all NLP tasks
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import os
|
|
| 2 |
import uuid
|
| 3 |
from pathlib import Path
|
| 4 |
|
|
|
|
| 5 |
import streamlit as st
|
| 6 |
from datasets import get_dataset_config_names
|
| 7 |
from dotenv import load_dotenv
|
|
@@ -83,10 +84,7 @@ with st.expander("Advanced configuration"):
|
|
| 83 |
domain="https://datasets-preview.huggingface.tech",
|
| 84 |
params={"dataset": selected_dataset, "config": selected_config, "split": selected_split},
|
| 85 |
).json()
|
| 86 |
-
|
| 87 |
-
col_names = []
|
| 88 |
-
for c in columns:
|
| 89 |
-
col_names.append(c["column"]["name"])
|
| 90 |
# splits = metadata[0]["splits"]
|
| 91 |
# split_names = list(splits.values())
|
| 92 |
# eval_split = splits.get("eval_split", split_names[0])
|
|
@@ -104,28 +102,105 @@ with st.expander("Advanced configuration"):
|
|
| 104 |
# TODO: propagate this information to payload
|
| 105 |
# TODO: make it task specific
|
| 106 |
col_mapping = {}
|
| 107 |
-
|
| 108 |
-
|
| 109 |
st.markdown("`text` column")
|
| 110 |
st.text("")
|
| 111 |
st.text("")
|
| 112 |
st.text("")
|
| 113 |
st.text("")
|
| 114 |
st.markdown("`target` column")
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
st.markdown("`context` column")
|
| 117 |
st.text("")
|
| 118 |
st.text("")
|
| 119 |
st.text("")
|
| 120 |
st.text("")
|
| 121 |
st.markdown("`question` column")
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
with st.form(key="form"):
|
| 131 |
|
|
@@ -158,6 +233,7 @@ with st.form(key="form"):
|
|
| 158 |
},
|
| 159 |
},
|
| 160 |
}
|
|
|
|
| 161 |
project_json_resp = http_post(
|
| 162 |
path="/projects/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
|
| 163 |
).json()
|
|
|
|
| 2 |
import uuid
|
| 3 |
from pathlib import Path
|
| 4 |
|
| 5 |
+
import pandas as pd
|
| 6 |
import streamlit as st
|
| 7 |
from datasets import get_dataset_config_names
|
| 8 |
from dotenv import load_dotenv
|
|
|
|
| 84 |
domain="https://datasets-preview.huggingface.tech",
|
| 85 |
params={"dataset": selected_dataset, "config": selected_config, "split": selected_split},
|
| 86 |
).json()
|
| 87 |
+
col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)
|
|
|
|
|
|
|
|
|
|
| 88 |
# splits = metadata[0]["splits"]
|
| 89 |
# split_names = list(splits.values())
|
| 90 |
# eval_split = splits.get("eval_split", split_names[0])
|
|
|
|
| 102 |
# TODO: propagate this information to payload
|
| 103 |
# TODO: make it task specific
|
| 104 |
col_mapping = {}
|
| 105 |
+
if selected_task in ["binary_classification", "multi_class_classification"]:
|
| 106 |
+
with col1:
|
| 107 |
st.markdown("`text` column")
|
| 108 |
st.text("")
|
| 109 |
st.text("")
|
| 110 |
st.text("")
|
| 111 |
st.text("")
|
| 112 |
st.markdown("`target` column")
|
| 113 |
+
with col2:
|
| 114 |
+
text_col = st.selectbox("This column should contain the text you want to classify", col_names)
|
| 115 |
+
target_col = st.selectbox(
|
| 116 |
+
"This column should contain the labels you want to assign to the text", col_names
|
| 117 |
+
)
|
| 118 |
+
col_mapping[text_col] = "text"
|
| 119 |
+
col_mapping[target_col] = "target"
|
| 120 |
+
|
| 121 |
+
elif selected_task == "entity_extraction":
|
| 122 |
+
with col1:
|
| 123 |
+
st.markdown("`tokens` column")
|
| 124 |
+
st.text("")
|
| 125 |
+
st.text("")
|
| 126 |
+
st.text("")
|
| 127 |
+
st.text("")
|
| 128 |
+
st.markdown("`tags` column")
|
| 129 |
+
with col2:
|
| 130 |
+
tokens_col = st.selectbox(
|
| 131 |
+
"This column should contain the parts of the text (as an array of tokens) you want to assign labels to",
|
| 132 |
+
col_names,
|
| 133 |
+
)
|
| 134 |
+
tags_col = st.selectbox(
|
| 135 |
+
"This column should contain the labels to associate to each part of the text", col_names
|
| 136 |
+
)
|
| 137 |
+
col_mapping[tokens_col] = "tokens"
|
| 138 |
+
col_mapping[tags_col] = "tags"
|
| 139 |
+
|
| 140 |
+
elif selected_task == "translation":
|
| 141 |
+
with col1:
|
| 142 |
+
st.markdown("`source` column")
|
| 143 |
+
st.text("")
|
| 144 |
+
st.text("")
|
| 145 |
+
st.text("")
|
| 146 |
+
st.text("")
|
| 147 |
+
st.markdown("`target` column")
|
| 148 |
+
with col2:
|
| 149 |
+
text_col = st.selectbox("This column should contain the text you want to translate", col_names)
|
| 150 |
+
target_col = st.selectbox(
|
| 151 |
+
"This column should contain an example translation of the source text", col_names
|
| 152 |
+
)
|
| 153 |
+
col_mapping[text_col] = "source"
|
| 154 |
+
col_mapping[target_col] = "target"
|
| 155 |
+
|
| 156 |
+
elif selected_task == "summarization":
|
| 157 |
+
with col1:
|
| 158 |
+
st.markdown("`text` column")
|
| 159 |
+
st.text("")
|
| 160 |
+
st.text("")
|
| 161 |
+
st.text("")
|
| 162 |
+
st.text("")
|
| 163 |
+
st.markdown("`target` column")
|
| 164 |
+
with col2:
|
| 165 |
+
text_col = st.selectbox("This column should contain the text you want to summarize", col_names)
|
| 166 |
+
target_col = st.selectbox("This column should contain an example summarization of the text", col_names)
|
| 167 |
+
col_mapping[text_col] = "text"
|
| 168 |
+
col_mapping[target_col] = "target"
|
| 169 |
+
|
| 170 |
+
elif selected_task == "extractive_question_answering":
|
| 171 |
+
with col1:
|
| 172 |
st.markdown("`context` column")
|
| 173 |
st.text("")
|
| 174 |
st.text("")
|
| 175 |
st.text("")
|
| 176 |
st.text("")
|
| 177 |
st.markdown("`question` column")
|
| 178 |
+
st.text("")
|
| 179 |
+
st.text("")
|
| 180 |
+
st.text("")
|
| 181 |
+
st.text("")
|
| 182 |
+
st.markdown("`answers.text` column")
|
| 183 |
+
st.text("")
|
| 184 |
+
st.text("")
|
| 185 |
+
st.text("")
|
| 186 |
+
st.text("")
|
| 187 |
+
st.markdown("`answers.answer_start` column")
|
| 188 |
+
with col2:
|
| 189 |
+
context_col = st.selectbox("This column should contain the question's context", col_names)
|
| 190 |
+
question_col = st.selectbox(
|
| 191 |
+
"This column should contain the question to be answered, given the context", col_names
|
| 192 |
+
)
|
| 193 |
+
answers_text_col = st.selectbox(
|
| 194 |
+
"This column should contain example answers to the question, extracted from the context", col_names
|
| 195 |
+
)
|
| 196 |
+
answers_start_col = st.selectbox(
|
| 197 |
+
"This column should contain the indices in the context of the first character of each answers.text",
|
| 198 |
+
col_names,
|
| 199 |
+
)
|
| 200 |
+
col_mapping[context_col] = "context"
|
| 201 |
+
col_mapping[question_col] = "question"
|
| 202 |
+
col_mapping[answers_text_col] = "answers.text"
|
| 203 |
+
col_mapping[answers_start_col] = "answers.answer_start"
|
| 204 |
|
| 205 |
with st.form(key="form"):
|
| 206 |
|
|
|
|
| 233 |
},
|
| 234 |
},
|
| 235 |
}
|
| 236 |
+
print(f"Payload: {payload}")
|
| 237 |
project_json_resp = http_post(
|
| 238 |
path="/projects/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
|
| 239 |
).json()
|
utils.py
CHANGED
|
@@ -57,6 +57,9 @@ def get_metadata(dataset_name: str) -> Union[Dict, None]:
|
|
| 57 |
|
| 58 |
|
| 59 |
def get_compatible_models(task, dataset_name):
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
| 61 |
compatible_models = api.list_models(filter=filt)
|
| 62 |
return [model.modelId for model in compatible_models]
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
def get_compatible_models(task, dataset_name):
|
| 60 |
+
# TODO: relax filter on PyTorch models once supported in AutoTrain
|
| 61 |
+
filt = ModelFilter(
|
| 62 |
+
task=AUTOTRAIN_TASK_TO_HUB_TASK[task], trained_dataset=dataset_name, library=["transformers", "pytorch"]
|
| 63 |
+
)
|
| 64 |
compatible_models = api.list_models(filter=filt)
|
| 65 |
return [model.modelId for model in compatible_models]
|