Spaces:
Runtime error
Runtime error
Merge pull request #5 from huggingface/use-dataset-backend
Browse files- .gitignore +2 -0
- app.py +204 -65
- requirements.txt +1 -1
- utils.py +38 -10
.gitignore
CHANGED
|
@@ -127,3 +127,5 @@ dmypy.json
|
|
| 127 |
|
| 128 |
# Pyre type checker
|
| 129 |
.pyre/
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
# Pyre type checker
|
| 129 |
.pyre/
|
| 130 |
+
|
| 131 |
+
scratch/
|
app.py
CHANGED
|
@@ -1,10 +1,14 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
from pathlib import Path
|
| 3 |
|
|
|
|
| 4 |
import streamlit as st
|
|
|
|
| 5 |
from dotenv import load_dotenv
|
|
|
|
| 6 |
|
| 7 |
-
from utils import get_compatible_models, get_metadata, http_post
|
| 8 |
|
| 9 |
if Path(".env").is_file():
|
| 10 |
load_dotenv(".env")
|
|
@@ -12,22 +16,19 @@ if Path(".env").is_file():
|
|
| 12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 13 |
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
|
| 14 |
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
TASK_TO_ID = {
|
| 18 |
"binary_classification": 1,
|
| 19 |
"multi_class_classification": 2,
|
| 20 |
-
"multi_label_classification": 3,
|
| 21 |
"entity_extraction": 4,
|
| 22 |
"extractive_question_answering": 5,
|
| 23 |
"translation": 6,
|
| 24 |
"summarization": 8,
|
| 25 |
-
"single_column_regression": 10,
|
| 26 |
}
|
| 27 |
|
| 28 |
-
# TODO: remove this hardcorded logic and accept any dataset on the Hub
|
| 29 |
-
DATASETS_TO_EVALUATE = ["emotion", "conll2003", "imdb", "squad", "xsum", "ncbi_disease", "go_emotions"]
|
| 30 |
-
|
| 31 |
###########
|
| 32 |
### APP ###
|
| 33 |
###########
|
|
@@ -42,90 +43,228 @@ st.markdown(
|
|
| 42 |
"""
|
| 43 |
)
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
query_params = st.experimental_get_query_params()
|
| 48 |
-
default_dataset =
|
| 49 |
if "dataset" in query_params:
|
| 50 |
-
if len(query_params["dataset"]) > 0 and query_params["dataset"][0] in
|
| 51 |
default_dataset = query_params["dataset"][0]
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
selectable_datasets,
|
| 56 |
-
index=selectable_datasets.index(default_dataset)
|
| 57 |
-
)
|
| 58 |
-
|
| 59 |
-
st.experimental_set_query_params(**{"dataset": [dataset]})
|
| 60 |
|
| 61 |
-
# TODO: remove this step once we select real datasets
|
| 62 |
-
# Strip out original dataset name
|
| 63 |
-
original_dataset_name = dataset_name.split("/")[-1].split("__")[-1]
|
| 64 |
|
| 65 |
-
# In general this will be a list of multiple configs => need to generalise logic here
|
| 66 |
-
metadata = get_metadata(
|
|
|
|
|
|
|
| 67 |
|
| 68 |
with st.expander("Advanced configuration"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
selected_split = st.selectbox("Select a split", split_names, index=split_names.index(eval_split))
|
| 77 |
|
| 78 |
# TODO: add a function to handle the mapping task <--> column mapping
|
| 79 |
-
col_mapping = metadata[0]["col_mapping"]
|
| 80 |
-
col_names = list(col_mapping.keys())
|
| 81 |
|
| 82 |
-
# TODO: figure out how to get all dataset column names (i.e. features) without download dataset itself
|
| 83 |
st.markdown("**Map your data columns**")
|
| 84 |
col1, col2 = st.columns(2)
|
| 85 |
|
| 86 |
# TODO: find a better way to layout these items
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
submit_button = st.form_submit_button("Make submission")
|
| 106 |
|
| 107 |
if submit_button:
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
payload = {
|
| 110 |
-
"
|
| 111 |
-
"
|
| 112 |
-
"
|
| 113 |
-
"col_mapping": metadata[0]["col_mapping"],
|
| 114 |
-
"split": selected_split,
|
| 115 |
-
"dataset": original_dataset_name,
|
| 116 |
-
"config": dataset_config,
|
| 117 |
}
|
| 118 |
-
|
| 119 |
-
path="/
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
).json()
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
f""
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import uuid
|
| 3 |
from pathlib import Path
|
| 4 |
|
| 5 |
+
import pandas as pd
|
| 6 |
import streamlit as st
|
| 7 |
+
from datasets import get_dataset_config_names
|
| 8 |
from dotenv import load_dotenv
|
| 9 |
+
from huggingface_hub import list_datasets
|
| 10 |
|
| 11 |
+
from utils import get_compatible_models, get_metadata, http_get, http_post
|
| 12 |
|
| 13 |
if Path(".env").is_file():
|
| 14 |
load_dotenv(".env")
|
|
|
|
| 16 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 17 |
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
|
| 18 |
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
|
| 19 |
+
DATASETS_PREVIEW_API = os.getenv("DATASETS_PREVIEW_API")
|
| 20 |
|
| 21 |
|
| 22 |
TASK_TO_ID = {
|
| 23 |
"binary_classification": 1,
|
| 24 |
"multi_class_classification": 2,
|
| 25 |
+
# "multi_label_classification": 3, # Not fully supported in AutoTrain
|
| 26 |
"entity_extraction": 4,
|
| 27 |
"extractive_question_answering": 5,
|
| 28 |
"translation": 6,
|
| 29 |
"summarization": 8,
|
|
|
|
| 30 |
}
|
| 31 |
|
|
|
|
|
|
|
|
|
|
| 32 |
###########
|
| 33 |
### APP ###
|
| 34 |
###########
|
|
|
|
| 43 |
"""
|
| 44 |
)
|
| 45 |
|
| 46 |
+
all_datasets = [d.id for d in list_datasets()]
|
|
|
|
| 47 |
query_params = st.experimental_get_query_params()
|
| 48 |
+
default_dataset = all_datasets[0]
|
| 49 |
if "dataset" in query_params:
|
| 50 |
+
if len(query_params["dataset"]) > 0 and query_params["dataset"][0] in all_datasets:
|
| 51 |
default_dataset = query_params["dataset"][0]
|
| 52 |
|
| 53 |
+
selected_dataset = st.selectbox("Select a dataset", all_datasets, index=all_datasets.index(default_dataset))
|
| 54 |
+
st.experimental_set_query_params(**{"dataset": [selected_dataset]})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
# TODO: In general this will be a list of multiple configs => need to generalise logic here
|
| 58 |
+
metadata = get_metadata(selected_dataset)
|
| 59 |
+
if metadata is None:
|
| 60 |
+
st.warning("No evaluation metadata found. Please configure the evaluation job below.")
|
| 61 |
|
| 62 |
with st.expander("Advanced configuration"):
|
| 63 |
+
## Select task
|
| 64 |
+
selected_task = st.selectbox("Select a task", list(TASK_TO_ID.keys()))
|
| 65 |
+
### Select config
|
| 66 |
+
configs = get_dataset_config_names(selected_dataset)
|
| 67 |
+
selected_config = st.selectbox("Select a config", configs)
|
| 68 |
+
|
| 69 |
+
## Select splits
|
| 70 |
+
splits_resp = http_get(path="/splits", domain=DATASETS_PREVIEW_API, params={"dataset": selected_dataset})
|
| 71 |
+
if splits_resp.status_code == 200:
|
| 72 |
+
split_names = []
|
| 73 |
+
all_splits = splits_resp.json()
|
| 74 |
+
for split in all_splits["splits"]:
|
| 75 |
+
if split["config"] == selected_config:
|
| 76 |
+
split_names.append(split["split"])
|
| 77 |
|
| 78 |
+
selected_split = st.selectbox("Select a split", split_names) # , index=split_names.index(eval_split))
|
| 79 |
|
| 80 |
+
## Show columns
|
| 81 |
+
rows_resp = http_get(
|
| 82 |
+
path="/rows",
|
| 83 |
+
domain="https://datasets-preview.huggingface.tech",
|
| 84 |
+
params={"dataset": selected_dataset, "config": selected_config, "split": selected_split},
|
| 85 |
+
).json()
|
| 86 |
+
col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)
|
| 87 |
+
# splits = metadata[0]["splits"]
|
| 88 |
+
# split_names = list(splits.values())
|
| 89 |
+
# eval_split = splits.get("eval_split", split_names[0])
|
| 90 |
|
| 91 |
+
# selected_split = st.selectbox("Select a split", split_names, index=split_names.index(eval_split))
|
| 92 |
|
| 93 |
# TODO: add a function to handle the mapping task <--> column mapping
|
| 94 |
+
# col_mapping = metadata[0]["col_mapping"]
|
| 95 |
+
# col_names = list(col_mapping.keys())
|
| 96 |
|
|
|
|
| 97 |
st.markdown("**Map your data columns**")
|
| 98 |
col1, col2 = st.columns(2)
|
| 99 |
|
| 100 |
# TODO: find a better way to layout these items
|
| 101 |
+
col_mapping = {}
|
| 102 |
+
if selected_task in ["binary_classification", "multi_class_classification"]:
|
| 103 |
+
with col1:
|
| 104 |
+
st.markdown("`text` column")
|
| 105 |
+
st.text("")
|
| 106 |
+
st.text("")
|
| 107 |
+
st.text("")
|
| 108 |
+
st.text("")
|
| 109 |
+
st.markdown("`target` column")
|
| 110 |
+
with col2:
|
| 111 |
+
text_col = st.selectbox("This column should contain the text you want to classify", col_names)
|
| 112 |
+
target_col = st.selectbox(
|
| 113 |
+
"This column should contain the labels you want to assign to the text", col_names
|
| 114 |
+
)
|
| 115 |
+
col_mapping[text_col] = "text"
|
| 116 |
+
col_mapping[target_col] = "target"
|
| 117 |
|
| 118 |
+
elif selected_task == "entity_extraction":
|
| 119 |
+
with col1:
|
| 120 |
+
st.markdown("`tokens` column")
|
| 121 |
+
st.text("")
|
| 122 |
+
st.text("")
|
| 123 |
+
st.text("")
|
| 124 |
+
st.text("")
|
| 125 |
+
st.markdown("`tags` column")
|
| 126 |
+
with col2:
|
| 127 |
+
tokens_col = st.selectbox(
|
| 128 |
+
"This column should contain the parts of the text (as an array of tokens) you want to assign labels to",
|
| 129 |
+
col_names,
|
| 130 |
+
)
|
| 131 |
+
tags_col = st.selectbox(
|
| 132 |
+
"This column should contain the labels to associate to each part of the text", col_names
|
| 133 |
+
)
|
| 134 |
+
col_mapping[tokens_col] = "tokens"
|
| 135 |
+
col_mapping[tags_col] = "tags"
|
| 136 |
|
| 137 |
+
elif selected_task == "translation":
|
| 138 |
+
with col1:
|
| 139 |
+
st.markdown("`source` column")
|
| 140 |
+
st.text("")
|
| 141 |
+
st.text("")
|
| 142 |
+
st.text("")
|
| 143 |
+
st.text("")
|
| 144 |
+
st.markdown("`target` column")
|
| 145 |
+
with col2:
|
| 146 |
+
text_col = st.selectbox("This column should contain the text you want to translate", col_names)
|
| 147 |
+
target_col = st.selectbox(
|
| 148 |
+
"This column should contain an example translation of the source text", col_names
|
| 149 |
+
)
|
| 150 |
+
col_mapping[text_col] = "source"
|
| 151 |
+
col_mapping[target_col] = "target"
|
| 152 |
|
| 153 |
+
elif selected_task == "summarization":
|
| 154 |
+
with col1:
|
| 155 |
+
st.markdown("`text` column")
|
| 156 |
+
st.text("")
|
| 157 |
+
st.text("")
|
| 158 |
+
st.text("")
|
| 159 |
+
st.text("")
|
| 160 |
+
st.markdown("`target` column")
|
| 161 |
+
with col2:
|
| 162 |
+
text_col = st.selectbox("This column should contain the text you want to summarize", col_names)
|
| 163 |
+
target_col = st.selectbox("This column should contain an example summarization of the text", col_names)
|
| 164 |
+
col_mapping[text_col] = "text"
|
| 165 |
+
col_mapping[target_col] = "target"
|
| 166 |
|
| 167 |
+
elif selected_task == "extractive_question_answering":
|
| 168 |
+
with col1:
|
| 169 |
+
st.markdown("`context` column")
|
| 170 |
+
st.text("")
|
| 171 |
+
st.text("")
|
| 172 |
+
st.text("")
|
| 173 |
+
st.text("")
|
| 174 |
+
st.markdown("`question` column")
|
| 175 |
+
st.text("")
|
| 176 |
+
st.text("")
|
| 177 |
+
st.text("")
|
| 178 |
+
st.text("")
|
| 179 |
+
st.markdown("`answers.text` column")
|
| 180 |
+
st.text("")
|
| 181 |
+
st.text("")
|
| 182 |
+
st.text("")
|
| 183 |
+
st.text("")
|
| 184 |
+
st.markdown("`answers.answer_start` column")
|
| 185 |
+
with col2:
|
| 186 |
+
context_col = st.selectbox("This column should contain the question's context", col_names)
|
| 187 |
+
question_col = st.selectbox(
|
| 188 |
+
"This column should contain the question to be answered, given the context", col_names
|
| 189 |
+
)
|
| 190 |
+
answers_text_col = st.selectbox(
|
| 191 |
+
"This column should contain example answers to the question, extracted from the context", col_names
|
| 192 |
+
)
|
| 193 |
+
answers_start_col = st.selectbox(
|
| 194 |
+
"This column should contain the indices in the context of the first character of each answers.text",
|
| 195 |
+
col_names,
|
| 196 |
+
)
|
| 197 |
+
col_mapping[context_col] = "context"
|
| 198 |
+
col_mapping[question_col] = "question"
|
| 199 |
+
col_mapping[answers_text_col] = "answers.text"
|
| 200 |
+
col_mapping[answers_start_col] = "answers.answer_start"
|
| 201 |
+
|
| 202 |
+
with st.form(key="form"):
|
| 203 |
+
|
| 204 |
+
compatible_models = get_compatible_models(selected_task, selected_dataset)
|
| 205 |
+
|
| 206 |
+
selected_models = st.multiselect(
|
| 207 |
+
"Select the models you wish to evaluate", compatible_models
|
| 208 |
+
)
|
| 209 |
submit_button = st.form_submit_button("Make submission")
|
| 210 |
|
| 211 |
if submit_button:
|
| 212 |
+
project_id = str(uuid.uuid4())[:3]
|
| 213 |
+
payload = {
|
| 214 |
+
"username": AUTOTRAIN_USERNAME,
|
| 215 |
+
"proj_name": f"my-eval-project-{project_id}",
|
| 216 |
+
"task": TASK_TO_ID[selected_task],
|
| 217 |
+
"config": {
|
| 218 |
+
"language": "en",
|
| 219 |
+
"max_models": 5,
|
| 220 |
+
"instance": {
|
| 221 |
+
"provider": "aws",
|
| 222 |
+
"instance_type": "ml.g4dn.4xlarge",
|
| 223 |
+
"max_runtime_seconds": 172800,
|
| 224 |
+
"num_instances": 1,
|
| 225 |
+
"disk_size_gb": 150,
|
| 226 |
+
},
|
| 227 |
+
"evaluation": {
|
| 228 |
+
"metrics": [],
|
| 229 |
+
"models": selected_models,
|
| 230 |
+
},
|
| 231 |
+
},
|
| 232 |
+
}
|
| 233 |
+
print(f"Payload: {payload}")
|
| 234 |
+
project_json_resp = http_post(
|
| 235 |
+
path="/projects/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
|
| 236 |
+
).json()
|
| 237 |
+
print(project_json_resp)
|
| 238 |
+
|
| 239 |
+
if project_json_resp["created"]:
|
| 240 |
payload = {
|
| 241 |
+
"split": 4, # use "auto" split choice in AutoTrain
|
| 242 |
+
"col_mapping": col_mapping,
|
| 243 |
+
"load_config": {"max_size_bytes": 0, "shuffle": False},
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
}
|
| 245 |
+
data_json_resp = http_post(
|
| 246 |
+
path=f"/projects/{project_json_resp['id']}/data/{selected_dataset}",
|
| 247 |
+
payload=payload,
|
| 248 |
+
token=HF_TOKEN,
|
| 249 |
+
domain=AUTOTRAIN_BACKEND_API,
|
| 250 |
+
params={"type": "dataset", "config_name": selected_config, "split_name": selected_split},
|
| 251 |
).json()
|
| 252 |
+
print(data_json_resp)
|
| 253 |
+
if data_json_resp["download_status"] == 1:
|
| 254 |
+
train_json_resp = http_get(
|
| 255 |
+
path=f"/projects/{project_json_resp['id']}/data/start_process",
|
| 256 |
+
token=HF_TOKEN,
|
| 257 |
+
domain=AUTOTRAIN_BACKEND_API,
|
| 258 |
+
).json()
|
| 259 |
+
print(train_json_resp)
|
| 260 |
+
if train_json_resp["success"]:
|
| 261 |
+
st.success(f"β
Successfully submitted evaluation job with project ID {project_id}")
|
| 262 |
+
st.markdown(
|
| 263 |
+
f"""
|
| 264 |
+
Evaluation takes appoximately 1 hour to complete, so grab a β or π΅ while you wait:
|
| 265 |
+
|
| 266 |
+
* π Click [here](https://huggingface.co/spaces/huggingface/leaderboards) to view the results from your submission
|
| 267 |
+
"""
|
| 268 |
+
)
|
| 269 |
+
else:
|
| 270 |
+
st.error("π Oh noes, there was an error submitting your submission!")
|
requirements.txt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
huggingface-hub==0.4.0
|
| 2 |
python-dotenv
|
| 3 |
-
streamlit
|
|
|
|
| 1 |
huggingface-hub==0.4.0
|
| 2 |
python-dotenv
|
| 3 |
+
streamlit==1.2.0
|
utils.py
CHANGED
|
@@ -1,6 +1,21 @@
|
|
|
|
|
|
|
|
| 1 |
import requests
|
| 2 |
from huggingface_hub import DatasetFilter, HfApi, ModelFilter
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
api = HfApi()
|
| 5 |
|
| 6 |
|
|
@@ -8,16 +23,23 @@ def get_auth_headers(token: str, prefix: str = "autonlp"):
|
|
| 8 |
return {"Authorization": f"{prefix} {token}"}
|
| 9 |
|
| 10 |
|
| 11 |
-
def http_post(
|
| 12 |
-
path: str,
|
| 13 |
-
token: str,
|
| 14 |
-
payload=None,
|
| 15 |
-
domain: str = None,
|
| 16 |
-
) -> requests.Response:
|
| 17 |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
| 18 |
try:
|
| 19 |
response = requests.post(
|
| 20 |
-
url=domain + path, json=payload, headers=get_auth_headers(token=token), allow_redirects=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
)
|
| 22 |
except requests.exceptions.ConnectionError:
|
| 23 |
print("β Failed to reach AutoNLP API, check your internet connection")
|
|
@@ -25,13 +47,19 @@ def http_post(
|
|
| 25 |
return response
|
| 26 |
|
| 27 |
|
| 28 |
-
def get_metadata(dataset_name):
|
| 29 |
filt = DatasetFilter(dataset_name=dataset_name)
|
| 30 |
data = api.list_datasets(filter=filt, full=True)
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
|
| 34 |
def get_compatible_models(task, dataset_name):
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
| 36 |
compatible_models = api.list_models(filter=filt)
|
| 37 |
return [model.modelId for model in compatible_models]
|
|
|
|
| 1 |
+
from typing import Dict, Union
|
| 2 |
+
|
| 3 |
import requests
|
| 4 |
from huggingface_hub import DatasetFilter, HfApi, ModelFilter
|
| 5 |
|
| 6 |
+
AUTOTRAIN_TASK_TO_HUB_TASK = {
|
| 7 |
+
"binary_classification": "text-classification",
|
| 8 |
+
"multi_class_classification": "text-classification",
|
| 9 |
+
# "multi_label_classification": "text-classification", # Not fully supported in AutoTrain
|
| 10 |
+
"entity_extraction": "token-classification",
|
| 11 |
+
"extractive_question_answering": "question-answering",
|
| 12 |
+
"translation": "translation",
|
| 13 |
+
"summarization": "summarization",
|
| 14 |
+
# "single_column_regression": 10,
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
HUB_TASK_TO_AUTOTRAIN_TASK = {v: k for k, v in AUTOTRAIN_TASK_TO_HUB_TASK.items()}
|
| 18 |
+
|
| 19 |
api = HfApi()
|
| 20 |
|
| 21 |
|
|
|
|
| 23 |
return {"Authorization": f"{prefix} {token}"}
|
| 24 |
|
| 25 |
|
| 26 |
+
def http_post(path: str, token: str, payload=None, domain: str = None, params=None) -> requests.Response:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
| 28 |
try:
|
| 29 |
response = requests.post(
|
| 30 |
+
url=domain + path, json=payload, headers=get_auth_headers(token=token), allow_redirects=True, params=params
|
| 31 |
+
)
|
| 32 |
+
except requests.exceptions.ConnectionError:
|
| 33 |
+
print("β Failed to reach AutoNLP API, check your internet connection")
|
| 34 |
+
response.raise_for_status()
|
| 35 |
+
return response
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def http_get(path: str, domain: str, token: str = None, params: dict = None) -> requests.Response:
|
| 39 |
+
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
| 40 |
+
try:
|
| 41 |
+
response = requests.get(
|
| 42 |
+
url=domain + path, headers=get_auth_headers(token=token), allow_redirects=True, params=params
|
| 43 |
)
|
| 44 |
except requests.exceptions.ConnectionError:
|
| 45 |
print("β Failed to reach AutoNLP API, check your internet connection")
|
|
|
|
| 47 |
return response
|
| 48 |
|
| 49 |
|
| 50 |
+
def get_metadata(dataset_name: str) -> Union[Dict, None]:
|
| 51 |
filt = DatasetFilter(dataset_name=dataset_name)
|
| 52 |
data = api.list_datasets(filter=filt, full=True)
|
| 53 |
+
if data[0].cardData is not None and "train-eval-index" in data[0].cardData.keys():
|
| 54 |
+
return data[0].cardData["train-eval-index"]
|
| 55 |
+
else:
|
| 56 |
+
return None
|
| 57 |
|
| 58 |
|
| 59 |
def get_compatible_models(task, dataset_name):
|
| 60 |
+
# TODO: relax filter on PyTorch models once supported in AutoTrain
|
| 61 |
+
filt = ModelFilter(
|
| 62 |
+
task=AUTOTRAIN_TASK_TO_HUB_TASK[task], trained_dataset=dataset_name, library=["transformers", "pytorch"]
|
| 63 |
+
)
|
| 64 |
compatible_models = api.list_models(filter=filt)
|
| 65 |
return [model.modelId for model in compatible_models]
|