File size: 13,731 Bytes
eb8267f 18a3564 eb8267f 72f0175 eb8267f 72f0175 eb8267f 18a3564 eb8267f 18a3564 eb8267f 18a3564 eb8267f 18a3564 eb8267f 72f0175 eb8267f 18a3564 72f0175 18a3564 eb8267f 72f0175 eb8267f 72f0175 eb8267f 72f0175 eb8267f 72f0175 eb8267f 72f0175 eb8267f 72f0175 eb8267f 72f0175 eb8267f 72f0175 18a3564 72f0175 18a3564 eb8267f 72f0175 eb8267f 72f0175 eb8267f 72f0175 eb8267f 72f0175 eb8267f 72f0175 eb8267f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import altair as alt
import fev
import pandas as pd
import pandas.io.formats.style
# Color constants - all colors defined in one place
COLORS = {
"dl_text": "#5A7FA5",
"st_text": "#A5795A",
# "st_text": "#666666",
"bar_fill": "#8d5eb7",
"error_bar": "#222222",
"point": "#111111",
"text_white": "white",
"text_black": "black",
"text_default": "#111",
"gold": "#F7D36B",
"silver": "#E5E7EB",
"bronze": "#E6B089",
"leakage_impute": "#3B82A0",
"failure_impute": "#E07B39",
}
HEATMAP_COLOR_SCHEME = "purplegreen"
# Model configuration: (url, org, zero_shot, model_type)
MODEL_CONFIG = {
# Chronos Models
"chronos_tiny": ("amazon/chronos-t5-tiny", "AWS", True, "DL"),
"chronos_mini": ("amazon/chronos-t5-mini", "AWS", True, "DL"),
"chronos_small": ("amazon/chronos-t5-small", "AWS", True, "DL"),
"chronos_base": ("amazon/chronos-t5-base", "AWS", True, "DL"),
"chronos_large": ("amazon/chronos-t5-large", "AWS", True, "DL"),
"chronos_bolt_tiny": ("amazon/chronos-bolt-tiny", "AWS", True, "DL"),
"chronos_bolt_mini": ("amazon/chronos-bolt-mini", "AWS", True, "DL"),
"chronos_bolt_small": ("amazon/chronos-bolt-small", "AWS", True, "DL"),
"chronos_bolt_base": ("amazon/chronos-bolt-base", "AWS", True, "DL"),
"chronos-bolt": ("amazon/chronos-bolt-base", "AWS", True, "DL"),
# Moirai Models
"moirai_large": ("Salesforce/moirai-1.1-R-large", "Salesforce", True, "DL"),
"moirai_base": ("Salesforce/moirai-1.1-R-base", "Salesforce", True, "DL"),
"moirai_small": ("Salesforce/moirai-1.1-R-small", "Salesforce", True, "DL"),
"moirai-2.0": ("Salesforce/moirai-2.0-R-small", "Salesforce", True, "DL"),
# TimesFM Models
"timesfm": ("google/timesfm-1.0-200m-pytorch", "Google", True, "DL"),
"timesfm-2.0": ("google/timesfm-2.0-500m-pytorch", "Google", True, "DL"),
"timesfm-2.5": ("google/timesfm-2.5-200m-pytorch", "Google", True, "DL"),
# Toto Models
"toto-1.0": ("Datadog/Toto-Open-Base-1.0", "Datadog", True, "DL"),
# Other Models
"tirex": ("NX-AI/TiRex", "NX-AI", True, "DL"),
"tabpfn-ts": ("Prior-Labs/TabPFN-v2-reg", "Prior Labs", True, "DL"),
"sundial-base": ("thuml/sundial-base-128m", "Tsinghua University", True, "DL"),
"ttm-r2": ("ibm-granite/granite-timeseries-ttm-r2", "IBM", True, "DL"),
# Task-specific models
"stat. ensemble": (
"https://nixtlaverse.nixtla.io/statsforecast/",
"β",
False,
"ST",
),
"autoarima": ("https://nixtlaverse.nixtla.io/statsforecast/", "β", False, "ST"),
"autotheta": ("https://nixtlaverse.nixtla.io/statsforecast/", "β", False, "ST"),
"autoets": ("https://nixtlaverse.nixtla.io/statsforecast/", "β", False, "ST"),
"seasonalnaive": ("https://nixtlaverse.nixtla.io/statsforecast/", "β", False, "ST"),
"seasonal naive": (
"https://nixtlaverse.nixtla.io/statsforecast/",
"β",
False,
"ST",
),
"drift": ("https://nixtlaverse.nixtla.io/statsforecast/", "β", False, "ST"),
"naive": ("https://nixtlaverse.nixtla.io/statsforecast/", "β", False, "ST"),
}
ALL_METRICS = {
"SQL": (
"SQL: Scaled Quantile Loss",
"The [Scaled Quantile Loss (SQL)](https://auto.gluon.ai/dev/tutorials/timeseries/forecasting-metrics.html#autogluon.timeseries.metrics.SQL) is a **scale-invariant** metric for evaluating **probabilistic** forecasts.",
),
"MASE": (
"MASE: Mean Absolute Scaled Error",
"The [Mean Absolute Scaled Error (MASE)](https://auto.gluon.ai/dev/tutorials/timeseries/forecasting-metrics.html#autogluon.timeseries.metrics.MASE) is a **scale-invariant** metric for evaluating **point** forecasts.",
),
"WQL": (
"WQL: Weighted Quantile Loss",
"The [Weighted Quantile Loss (WQL)](https://auto.gluon.ai/dev/tutorials/timeseries/forecasting-metrics.html#autogluon.timeseries.metrics.WQL), is a **scale-dependent** metric for evaluating **probabilistic** forecasts.",
),
"WAPE": (
"WAPE: Weighted Absolute Percentage Error",
"The [Weighted Absolute Percentage Error (WAPE)](https://auto.gluon.ai/dev/tutorials/timeseries/forecasting-metrics.html#autogluon.timeseries.metrics.WAPE) is a **scale-dependent** metric for evaluating **point** forecasts.",
),
}
def format_metric_name(metric_name: str):
return ALL_METRICS[metric_name][0]
def get_metric_description(metric_name: str):
return ALL_METRICS[metric_name][1]
def get_model_link(model_name):
config = MODEL_CONFIG.get(model_name.lower())
if not config or not config[0]:
return ""
url = config[0]
return url if url.startswith("https:") else f"https://huggingface.co/{url}"
def get_model_organization(model_name):
config = MODEL_CONFIG.get(model_name.lower())
return config[1] if config else "β"
def get_zero_shot_status(model_name):
config = MODEL_CONFIG.get(model_name.lower())
return "β" if config and config[2] else "Γ"
def get_model_type(model_name):
config = MODEL_CONFIG.get(model_name.lower())
return config[3] if config else "β"
def highlight_model_type_color(cell):
config = MODEL_CONFIG.get(cell.lower())
if config:
color = COLORS["dl_text"] if config[3] == "DL" else COLORS["st_text"]
return f"font-weight: bold; color: {color}"
return "font-weight: bold"
def format_leaderboard(df: pd.DataFrame):
df = df.copy()
df["skill_score"] = df["skill_score"].round(1)
df["win_rate"] = df["win_rate"].round(1)
df["zero_shot"] = df["model_name"].apply(get_zero_shot_status)
# Format leakage column: convert to int for all models, 0 for non-zero-shot
df["training_corpus_overlap"] = df.apply(
lambda row: int(round(row["training_corpus_overlap"] * 100))
if row["zero_shot"] == "β"
else 0,
axis=1,
)
df["link"] = df["model_name"].apply(get_model_link)
df["org"] = df["model_name"].apply(get_model_organization)
df = df[
[
"model_name",
"win_rate",
"skill_score",
"median_inference_time_s",
"training_corpus_overlap",
"num_failures",
"zero_shot",
"org",
"link",
]
]
return (
df.style.map(highlight_model_type_color, subset=["model_name"])
.map(lambda x: "font-weight: bold", subset=["zero_shot"])
.apply(
lambda x: [
"background-color: #f8f9fa" if i % 2 == 1 else "" for i in range(len(x))
],
axis=0,
)
)
def construct_bar_chart(df: pd.DataFrame, col: str, metric_name: str):
label = "Skill Score" if col == "skill_score" else "Win Rate"
tooltip = [
alt.Tooltip("model_name:N"),
alt.Tooltip(f"{col}:Q", format=".2f"),
alt.Tooltip(f"{col}_lower:Q", title="95% CI Lower", format=".2f"),
alt.Tooltip(f"{col}_upper:Q", title="95% CI Upper", format=".2f"),
]
base_encode = {
"y": alt.Y("model_name:N", title="Forecasting Model", sort=None),
"tooltip": tooltip,
}
bars = (
alt.Chart(df)
.mark_bar(color=COLORS["bar_fill"], cornerRadius=4)
.encode(
x=alt.X(f"{col}:Q", title=f"{label} (%)", scale=alt.Scale(zero=False)),
**base_encode,
)
)
error_bars = (
alt.Chart(df)
.mark_errorbar(ticks={"height": 5}, color=COLORS["error_bar"])
.encode(
y=alt.Y("model_name:N", title=None, sort=None),
x=alt.X(f"{col}_lower:Q", title=f"{label} (%)"),
x2=alt.X2(f"{col}_upper:Q"),
tooltip=tooltip,
)
)
points = (
alt.Chart(df)
.mark_point(filled=True, color=COLORS["point"])
.encode(x=alt.X(f"{col}:Q", title=f"{label} (%)"), **base_encode)
)
return (
(bars + error_bars + points)
.properties(height=500, title=f"{label} ({metric_name}) with 95% CIs")
.configure_title(fontSize=16)
)
def construct_pairwise_chart(df: pd.DataFrame, col: str, metric_name: str):
config = {
"win_rate": ("Win Rate", [0, 100], 50, f"abs(datum.{col} - 50) > 30"),
"skill_score": ("Skill Score", [-15, 15], 0, f"abs(datum.{col}) > 10"),
}
cbar_label, domain, domain_mid, text_condition = config[col]
df = df.copy()
for c in [col, f"{col}_lower", f"{col}_upper"]:
df[c] *= 100
model_order = (
df.groupby("model_1")[col].mean().sort_values(ascending=False).index.tolist()
)
tooltip = [
alt.Tooltip("model_1:N", title="Model 1"),
alt.Tooltip("model_2:N", title="Model 2"),
alt.Tooltip(f"{col}:Q", title=cbar_label.split(" ")[0], format=".1f"),
alt.Tooltip(f"{col}_lower:Q", title="95% CI Lower", format=".1f"),
alt.Tooltip(f"{col}_upper:Q", title="95% CI Upper", format=".1f"),
]
base = alt.Chart(df).encode(
x=alt.X(
"model_2:N",
sort=model_order,
title="Model 2",
axis=alt.Axis(orient="top", labelAngle=-90),
),
y=alt.Y("model_1:N", sort=model_order, title="Model 1"),
)
heatmap = base.mark_rect().encode(
color=alt.Color(
f"{col}:Q",
legend=None,
scale=alt.Scale(
scheme=HEATMAP_COLOR_SCHEME,
domain=domain,
domainMid=domain_mid,
clamp=True,
),
),
tooltip=tooltip,
)
text_main = base.mark_text(dy=-8, fontSize=8, baseline="top", yOffset=5).encode(
text=alt.Text(f"{col}:Q", format=".1f"),
color=alt.condition(
text_condition,
alt.value(COLORS["text_white"]),
alt.value(COLORS["text_black"]),
),
tooltip=tooltip,
)
return (
(heatmap + text_main)
.properties(
height=550,
title={
"text": f"Pairwise {cbar_label} ({metric_name}) with 95% CIs",
"fontSize": 16,
},
)
.configure_axis(labelFontSize=11, titleFontSize=13, titleFontWeight="bold")
.resolve_scale(color="independent")
)
def construct_pivot_table_from_df(
errors: pd.DataFrame, metric_name: str
) -> pd.io.formats.style.Styler:
"""Construct styled pivot table from precomputed DataFrame."""
def highlight_by_position(styler):
rank_colors = {1: COLORS["gold"], 2: COLORS["silver"], 3: COLORS["bronze"]}
for row_idx in errors.index:
row_ranks = errors.loc[row_idx].rank(method="min")
for col_idx in errors.columns:
rank = row_ranks[col_idx]
style_parts = []
# Rank background colors
if rank <= 3:
style_parts.append(f"background-color: {rank_colors[rank]}")
else:
style_parts.append(f"color: {COLORS['text_default']}")
if style_parts:
styler = styler.map(
lambda x, s="; ".join(style_parts): s,
subset=pd.IndexSlice[row_idx:row_idx, col_idx:col_idx],
)
return styler
return highlight_by_position(errors.style).format(precision=3)
def construct_pivot_table(
summaries: pd.DataFrame,
metric_name: str,
baseline_model: str,
leakage_imputation_model: str,
) -> pd.io.formats.style.Styler:
errors = fev.pivot_table(
summaries=summaries, metric_column=metric_name, task_columns=["task_name"]
)
train_overlap = (
fev.pivot_table(
summaries=summaries,
metric_column="trained_on_this_dataset",
task_columns=["task_name"],
)
.fillna(False)
.astype(bool)
)
is_imputed_baseline = errors.isna()
is_leakage_imputed = train_overlap
# Handle imputations
errors = errors.mask(train_overlap, errors[leakage_imputation_model], axis=0)
for col in errors.columns:
if col != baseline_model:
errors[col] = errors[col].fillna(errors[baseline_model])
errors = errors[errors.rank(axis=1).mean().sort_values().index]
errors.index.rename("Task name", inplace=True)
def highlight_by_position(styler):
rank_colors = {1: COLORS["gold"], 2: COLORS["silver"], 3: COLORS["bronze"]}
for row_idx in errors.index:
row_ranks = errors.loc[row_idx].rank(method="min")
for col_idx in errors.columns:
rank = row_ranks[col_idx]
style_parts = []
# Rank background colors
if rank <= 3:
style_parts.append(f"background-color: {rank_colors[rank]}")
# Imputation text colors
if is_leakage_imputed.loc[row_idx, col_idx]:
style_parts.append(f"color: {COLORS['leakage_impute']}")
elif is_imputed_baseline.loc[row_idx, col_idx]:
style_parts.append(f"color: {COLORS['failure_impute']}")
elif not style_parts or (
len(style_parts) == 1 and "font-weight" in style_parts[0]
):
style_parts.append(f"color: {COLORS['text_default']}")
if style_parts:
styler = styler.map(
lambda x, s="; ".join(style_parts): s,
subset=pd.IndexSlice[row_idx:row_idx, col_idx:col_idx],
)
return styler
return highlight_by_position(errors.style).format(precision=3)
|