File size: 8,131 Bytes
eb8267f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import sys
from pathlib import Path

sys.path.append(str(Path(__file__).parent.parent))

import fev
import pandas as pd
import streamlit as st
from streamlit.elements.lib.column_types import ColumnConfig

from src.strings import (
    CHRONOS_BENCHMARK_BASIC_INFO,
    CHRONOS_BENCHMARK_DETAILS,
    CITATION_CHRONOS,
    CITATION_FEV,
    CITATION_HEADER,
    PAIRWISE_BENCHMARK_DETAILS,
    get_pivot_legend,
)
from src.utils import (
    construct_bar_chart,
    construct_pairwise_chart,
    construct_pivot_table,
    format_leaderboard,
    format_metric_name,
    get_metric_description,
)

st.set_page_config(layout="wide", page_title="FEV Benchmark Leaderboard", page_icon=":material/trophy:")

TITLE = "<h1 style='text-align: center; font-size: 350%;'>Chronos Benchmark II</h1>"
BASELINE_MODEL = "seasonal_naive"
LEAKAGE_IMPUTATION_MODEL = "chronos_bolt_base"
SORT_COL = "win_rate"
N_RESAMPLES_FOR_CI = 1000
TOP_K_MODELS_TO_PLOT = 15
AVAILABLE_METRICS = ["WQL", "MASE"]
SUMMARY_URLS = [
    "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_arima.csv",
    "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_ets.csv",
    "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/auto_theta.csv",
    "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_base.csv",
    "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_large.csv",
    "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_mini.csv",
    "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_small.csv",
    "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_tiny.csv",
    "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_bolt_base.csv",
    "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_bolt_mini.csv",
    "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_bolt_small.csv",
    "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/chronos_bolt_tiny.csv",
    "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/moirai_base.csv",
    "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/moirai_large.csv",
    "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/moirai_small.csv",
    "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/seasonal_naive.csv",
    "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/timesfm.csv",
    "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/timesfm-2.0.csv",
    "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/ttm-r2.csv",
    "https://raw.githubusercontent.com/autogluon/fev/refs/heads/main/benchmarks/chronos_zeroshot/results/tirex.csv",
]


@st.cache_data()
def load_summaries():
    summaries = []
    for url in SUMMARY_URLS:
        df = pd.read_csv(url)
        summaries.append(df)
    return pd.concat(summaries, ignore_index=True)


@st.cache_data()
def get_leaderboard(metric_name: str) -> pd.DataFrame:
    summaries = load_summaries()
    lb = fev.analysis.leaderboard(
        summaries=summaries,
        metric_column=metric_name,
        missing_strategy="impute",
        baseline_model=BASELINE_MODEL,
        leakage_imputation_model=LEAKAGE_IMPUTATION_MODEL,
    )
    lb = lb.astype("float64").reset_index()

    lb["skill_score"] = lb["skill_score"] * 100
    lb["win_rate"] = lb["win_rate"] * 100
    lb["num_failures"] = lb["num_failures"] / summaries["task_name"].nunique() * 100
    return lb


@st.cache_data()
def get_pairwise(metric_name: str, included_models: list[str]) -> pd.DataFrame:
    if BASELINE_MODEL not in included_models:
        included_models = included_models + [BASELINE_MODEL]
    summaries = load_summaries()
    return (
        fev.analysis.pairwise_comparison(
            summaries,
            included_models=included_models,
            metric_column=metric_name,
            baseline_model=BASELINE_MODEL,
            missing_strategy="impute",
            n_resamples=N_RESAMPLES_FOR_CI,
            leakage_imputation_model=LEAKAGE_IMPUTATION_MODEL,
        )
        .round(3)
        .reset_index()
    )


with st.sidebar:
    selected_metric = st.selectbox("Evaluation Metric", options=AVAILABLE_METRICS, format_func=format_metric_name)
    st.caption(get_metric_description(selected_metric))

cols = st.columns(spec=[0.025, 0.95, 0.025])

with cols[1] as main_container:
    st.markdown(TITLE, unsafe_allow_html=True)

    metric_df = get_leaderboard(selected_metric).sort_values(by=SORT_COL, ascending=False)
    top_k_models = metric_df.head(TOP_K_MODELS_TO_PLOT)["model_name"].tolist()
    pairwise_df = get_pairwise(selected_metric, included_models=top_k_models)

    st.markdown("## :material/trophy: Leaderboard", unsafe_allow_html=True)
    st.markdown(CHRONOS_BENCHMARK_BASIC_INFO, unsafe_allow_html=True)
    df_styled = format_leaderboard(metric_df)
    st.dataframe(
        df_styled,
        use_container_width=True,
        hide_index=True,
        column_config={
            "model_name": ColumnConfig(label="Model Name", alignment="left"),
            "win_rate": st.column_config.NumberColumn(label="Avg. win rate (%)", format="%.1f"),
            "skill_score": st.column_config.NumberColumn(label="Skill score (%)", format="%.1f"),
            "median_inference_time_s": st.column_config.NumberColumn(label="Median runtime (s)", format="%.1f"),
            "training_corpus_overlap": st.column_config.NumberColumn(label="Leakage (%)", format="%d"),
            "num_failures": st.column_config.NumberColumn(label="Failed tasks (%)", format="%.0f"),
            "zero_shot": ColumnConfig(label="Zero-shot", alignment="center"),
            "org": ColumnConfig(label="Organization", alignment="left"),
            "link": st.column_config.LinkColumn(label="Link", display_text=":material/open_in_new:"),
        },
    )

    with st.expander("See details"):
        st.markdown(CHRONOS_BENCHMARK_DETAILS, unsafe_allow_html=True)

    st.markdown("## :material/bar_chart: Pairwise comparison", unsafe_allow_html=True)
    chart_col_1, _, chart_col_2 = st.columns(spec=[0.45, 0.1, 0.45])

    with chart_col_1:
        st.altair_chart(
            construct_pairwise_chart(pairwise_df, col="win_rate", metric_name=selected_metric),
            use_container_width=True,
        )

    with chart_col_2:
        st.altair_chart(
            construct_pairwise_chart(pairwise_df, col="skill_score", metric_name=selected_metric),
            use_container_width=True,
        )

    with st.expander("See details"):
        st.markdown(PAIRWISE_BENCHMARK_DETAILS, unsafe_allow_html=True)

    st.markdown("## :material/table_chart: Results for individual tasks", unsafe_allow_html=True)
    with st.expander("Show detailed results"):
        st.markdown(get_pivot_legend(BASELINE_MODEL, LEAKAGE_IMPUTATION_MODEL), unsafe_allow_html=True)
        st.dataframe(
            construct_pivot_table(
                summaries=load_summaries(),
                metric_name=selected_metric,
                baseline_model=BASELINE_MODEL,
                leakage_imputation_model=LEAKAGE_IMPUTATION_MODEL,
            )
        )

    st.divider()
    st.markdown("### :material/format_quote: Citation", unsafe_allow_html=True)
    st.markdown(CITATION_HEADER)
    st.markdown(CITATION_FEV)
    st.markdown(CITATION_CHRONOS)