Spaces:
Runtime error
Runtime error
Commit
·
c47a41a
1
Parent(s):
e836d24
adding ui interface template
Browse files
app.py
CHANGED
|
@@ -4,8 +4,8 @@ from PIL import Image
|
|
| 4 |
import requests
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
import gradio as gr
|
| 7 |
-
|
| 8 |
-
|
| 9 |
|
| 10 |
|
| 11 |
# option 1: load with randomly initialized weights (train from scratch)
|
|
@@ -13,7 +13,7 @@ import gradio as gr
|
|
| 13 |
config = ViTConfig(num_hidden_layers=12, hidden_size=768)
|
| 14 |
model = ViTForImageClassification(config)
|
| 15 |
|
| 16 |
-
print(config)
|
| 17 |
|
| 18 |
feature_extractor = ViTFeatureExtractor()
|
| 19 |
|
|
@@ -24,3 +24,34 @@ feature_extractor = ViTFeatureExtractor()
|
|
| 24 |
image = "cats.jpg"
|
| 25 |
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import requests
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
import gradio as gr
|
| 7 |
+
from transformers import ImageClassificationPipeline, PerceiverForImageClassificationConvProcessing, PerceiverFeatureExtractor
|
| 8 |
+
import torch
|
| 9 |
|
| 10 |
|
| 11 |
# option 1: load with randomly initialized weights (train from scratch)
|
|
|
|
| 13 |
config = ViTConfig(num_hidden_layers=12, hidden_size=768)
|
| 14 |
model = ViTForImageClassification(config)
|
| 15 |
|
| 16 |
+
#print(config)
|
| 17 |
|
| 18 |
feature_extractor = ViTFeatureExtractor()
|
| 19 |
|
|
|
|
| 24 |
image = "cats.jpg"
|
| 25 |
|
| 26 |
|
| 27 |
+
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
| 28 |
+
torch.hub.download_url_to_file('https://storage.googleapis.com/perceiver_io/dalmation.jpg', 'dog.jpg')
|
| 29 |
+
|
| 30 |
+
feature_extractor = PerceiverFeatureExtractor.from_pretrained("deepmind/vision-perceiver-conv")
|
| 31 |
+
model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")
|
| 32 |
+
|
| 33 |
+
image_pipe = ImageClassificationPipeline(model=model, feature_extractor=feature_extractor)
|
| 34 |
+
|
| 35 |
+
def classify_image(image):
|
| 36 |
+
results = image_pipe(image)
|
| 37 |
+
# convert to format Gradio expects
|
| 38 |
+
output = {}
|
| 39 |
+
for prediction in results:
|
| 40 |
+
predicted_label = prediction['label']
|
| 41 |
+
score = prediction['score']
|
| 42 |
+
output[predicted_label] = score
|
| 43 |
+
return output
|
| 44 |
+
|
| 45 |
+
image = gr.inputs.Image(type="pil")
|
| 46 |
+
label = gr.outputs.Label(num_top_classes=5)
|
| 47 |
+
examples = [["cats.jpg"], ["dog.jpg"]]
|
| 48 |
+
title = "Interactive demo: Perceiver for image classification"
|
| 49 |
+
description = "Demo for classifying images with Perceiver IO. To use it, simply upload an image or use the example images below and click 'submit' to let the model predict the 5 most probable ImageNet classes. Results will show up in a few seconds."
|
| 50 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2107.14795'>Perceiver IO: A General Architecture for Structured Inputs & Outputs</a> | <a href='https://deepmind.com/blog/article/building-architectures-that-can-handle-the-worlds-data/'>Official blog</a></p>"
|
| 51 |
+
|
| 52 |
+
gr.Interface(fn=classify_image, inputs=image, outputs=label, title=title, description=description, examples=examples, enable_queue=True).launch(debug=True)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|