Spaces:
Runtime error
Runtime error
| from typing import Dict | |
| import webdataset as wds | |
| import numpy as np | |
| from omegaconf import DictConfig, ListConfig | |
| import torch | |
| from torch.utils.data import Dataset | |
| from pathlib import Path | |
| import json | |
| from PIL import Image | |
| from torchvision import transforms | |
| import torchvision | |
| from einops import rearrange | |
| from ldm.util import instantiate_from_config | |
| from datasets import load_dataset | |
| import pytorch_lightning as pl | |
| import copy | |
| import csv | |
| import cv2 | |
| import random | |
| import matplotlib.pyplot as plt | |
| from torch.utils.data import DataLoader | |
| import json | |
| import os | |
| import webdataset as wds | |
| import math | |
| from torch.utils.data.distributed import DistributedSampler | |
| # Some hacky things to make experimentation easier | |
| def make_transform_multi_folder_data(paths, caption_files=None, **kwargs): | |
| ds = make_multi_folder_data(paths, caption_files, **kwargs) | |
| return TransformDataset(ds) | |
| def make_nfp_data(base_path): | |
| dirs = list(Path(base_path).glob("*/")) | |
| print(f"Found {len(dirs)} folders") | |
| print(dirs) | |
| tforms = [transforms.Resize(512), transforms.CenterCrop(512)] | |
| datasets = [NfpDataset(x, image_transforms=copy.copy(tforms), default_caption="A view from a train window") for x in dirs] | |
| return torch.utils.data.ConcatDataset(datasets) | |
| class VideoDataset(Dataset): | |
| def __init__(self, root_dir, image_transforms, caption_file, offset=8, n=2): | |
| self.root_dir = Path(root_dir) | |
| self.caption_file = caption_file | |
| self.n = n | |
| ext = "mp4" | |
| self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}"))) | |
| self.offset = offset | |
| if isinstance(image_transforms, ListConfig): | |
| image_transforms = [instantiate_from_config(tt) for tt in image_transforms] | |
| image_transforms.extend([transforms.ToTensor(), | |
| transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))]) | |
| image_transforms = transforms.Compose(image_transforms) | |
| self.tform = image_transforms | |
| with open(self.caption_file) as f: | |
| reader = csv.reader(f) | |
| rows = [row for row in reader] | |
| self.captions = dict(rows) | |
| def __len__(self): | |
| return len(self.paths) | |
| def __getitem__(self, index): | |
| for i in range(10): | |
| try: | |
| return self._load_sample(index) | |
| except Exception: | |
| # Not really good enough but... | |
| print("uh oh") | |
| def _load_sample(self, index): | |
| n = self.n | |
| filename = self.paths[index] | |
| min_frame = 2*self.offset + 2 | |
| vid = cv2.VideoCapture(str(filename)) | |
| max_frames = int(vid.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| curr_frame_n = random.randint(min_frame, max_frames) | |
| vid.set(cv2.CAP_PROP_POS_FRAMES,curr_frame_n) | |
| _, curr_frame = vid.read() | |
| prev_frames = [] | |
| for i in range(n): | |
| prev_frame_n = curr_frame_n - (i+1)*self.offset | |
| vid.set(cv2.CAP_PROP_POS_FRAMES,prev_frame_n) | |
| _, prev_frame = vid.read() | |
| prev_frame = self.tform(Image.fromarray(prev_frame[...,::-1])) | |
| prev_frames.append(prev_frame) | |
| vid.release() | |
| caption = self.captions[filename.name] | |
| data = { | |
| "image": self.tform(Image.fromarray(curr_frame[...,::-1])), | |
| "prev": torch.cat(prev_frames, dim=-1), | |
| "txt": caption | |
| } | |
| return data | |
| # end hacky things | |
| def make_tranforms(image_transforms): | |
| # if isinstance(image_transforms, ListConfig): | |
| # image_transforms = [instantiate_from_config(tt) for tt in image_transforms] | |
| image_transforms = [] | |
| image_transforms.extend([transforms.ToTensor(), | |
| transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))]) | |
| image_transforms = transforms.Compose(image_transforms) | |
| return image_transforms | |
| def make_multi_folder_data(paths, caption_files=None, **kwargs): | |
| """Make a concat dataset from multiple folders | |
| Don't suport captions yet | |
| If paths is a list, that's ok, if it's a Dict interpret it as: | |
| k=folder v=n_times to repeat that | |
| """ | |
| list_of_paths = [] | |
| if isinstance(paths, (Dict, DictConfig)): | |
| assert caption_files is None, \ | |
| "Caption files not yet supported for repeats" | |
| for folder_path, repeats in paths.items(): | |
| list_of_paths.extend([folder_path]*repeats) | |
| paths = list_of_paths | |
| if caption_files is not None: | |
| datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)] | |
| else: | |
| datasets = [FolderData(p, **kwargs) for p in paths] | |
| return torch.utils.data.ConcatDataset(datasets) | |
| class NfpDataset(Dataset): | |
| def __init__(self, | |
| root_dir, | |
| image_transforms=[], | |
| ext="jpg", | |
| default_caption="", | |
| ) -> None: | |
| """assume sequential frames and a deterministic transform""" | |
| self.root_dir = Path(root_dir) | |
| self.default_caption = default_caption | |
| self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}"))) | |
| self.tform = make_tranforms(image_transforms) | |
| def __len__(self): | |
| return len(self.paths) - 1 | |
| def __getitem__(self, index): | |
| prev = self.paths[index] | |
| curr = self.paths[index+1] | |
| data = {} | |
| data["image"] = self._load_im(curr) | |
| data["prev"] = self._load_im(prev) | |
| data["txt"] = self.default_caption | |
| return data | |
| def _load_im(self, filename): | |
| im = Image.open(filename).convert("RGB") | |
| return self.tform(im) | |
| class ObjaverseDataModuleFromConfig(pl.LightningDataModule): | |
| def __init__(self, root_dir, batch_size, total_view, train=None, validation=None, | |
| test=None, num_workers=4, **kwargs): | |
| super().__init__(self) | |
| self.root_dir = root_dir | |
| self.batch_size = batch_size | |
| self.num_workers = num_workers | |
| self.total_view = total_view | |
| if train is not None: | |
| dataset_config = train | |
| if validation is not None: | |
| dataset_config = validation | |
| if 'image_transforms' in dataset_config: | |
| image_transforms = [torchvision.transforms.Resize(dataset_config.image_transforms.size)] | |
| else: | |
| image_transforms = [] | |
| image_transforms.extend([transforms.ToTensor(), | |
| transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))]) | |
| self.image_transforms = torchvision.transforms.Compose(image_transforms) | |
| def train_dataloader(self): | |
| dataset = ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=False, \ | |
| image_transforms=self.image_transforms) | |
| sampler = DistributedSampler(dataset) | |
| return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, sampler=sampler) | |
| def val_dataloader(self): | |
| dataset = ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=True, \ | |
| image_transforms=self.image_transforms) | |
| sampler = DistributedSampler(dataset) | |
| return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False) | |
| def test_dataloader(self): | |
| return wds.WebLoader(ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=self.validation),\ | |
| batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False) | |
| class ObjaverseData(Dataset): | |
| def __init__(self, | |
| root_dir='.objaverse/hf-objaverse-v1/views', | |
| image_transforms=[], | |
| ext="png", | |
| default_trans=torch.zeros(3), | |
| postprocess=None, | |
| return_paths=False, | |
| total_view=4, | |
| validation=False | |
| ) -> None: | |
| """Create a dataset from a folder of images. | |
| If you pass in a root directory it will be searched for images | |
| ending in ext (ext can be a list) | |
| """ | |
| self.root_dir = Path(root_dir) | |
| self.default_trans = default_trans | |
| self.return_paths = return_paths | |
| if isinstance(postprocess, DictConfig): | |
| postprocess = instantiate_from_config(postprocess) | |
| self.postprocess = postprocess | |
| self.total_view = total_view | |
| if not isinstance(ext, (tuple, list, ListConfig)): | |
| ext = [ext] | |
| with open(os.path.join(root_dir, 'valid_paths.json')) as f: | |
| self.paths = json.load(f) | |
| total_objects = len(self.paths) | |
| if validation: | |
| self.paths = self.paths[math.floor(total_objects / 100. * 99.):] # used last 1% as validation | |
| else: | |
| self.paths = self.paths[:math.floor(total_objects / 100. * 99.)] # used first 99% as training | |
| print('============= length of dataset %d =============' % len(self.paths)) | |
| self.tform = image_transforms | |
| def __len__(self): | |
| return len(self.paths) | |
| def cartesian_to_spherical(self, xyz): | |
| ptsnew = np.hstack((xyz, np.zeros(xyz.shape))) | |
| xy = xyz[:,0]**2 + xyz[:,1]**2 | |
| z = np.sqrt(xy + xyz[:,2]**2) | |
| theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down | |
| #ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up | |
| azimuth = np.arctan2(xyz[:,1], xyz[:,0]) | |
| return np.array([theta, azimuth, z]) | |
| def get_T(self, target_RT, cond_RT): | |
| R, T = target_RT[:3, :3], target_RT[:, -1] | |
| T_target = -R.T @ T | |
| R, T = cond_RT[:3, :3], cond_RT[:, -1] | |
| T_cond = -R.T @ T | |
| theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :]) | |
| theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :]) | |
| d_theta = theta_target - theta_cond | |
| d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi) | |
| d_z = z_target - z_cond | |
| d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()]) | |
| return d_T | |
| def load_im(self, path, color): | |
| ''' | |
| replace background pixel with random color in rendering | |
| ''' | |
| try: | |
| img = plt.imread(path) | |
| except: | |
| print(path) | |
| sys.exit() | |
| img[img[:, :, -1] == 0.] = color | |
| img = Image.fromarray(np.uint8(img[:, :, :3] * 255.)) | |
| return img | |
| def __getitem__(self, index): | |
| data = {} | |
| if self.paths[index][-2:] == '_1': # dirty fix for rendering dataset twice | |
| total_view = 8 | |
| else: | |
| total_view = 4 | |
| index_target, index_cond = random.sample(range(total_view), 2) # without replacement | |
| filename = os.path.join(self.root_dir, self.paths[index]) | |
| # print(self.paths[index]) | |
| if self.return_paths: | |
| data["path"] = str(filename) | |
| color = [1., 1., 1., 1.] | |
| try: | |
| target_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_target), color)) | |
| cond_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_cond), color)) | |
| target_RT = np.load(os.path.join(filename, '%03d.npy' % index_target)) | |
| cond_RT = np.load(os.path.join(filename, '%03d.npy' % index_cond)) | |
| except: | |
| # very hacky solution, sorry about this | |
| filename = os.path.join(self.root_dir, '692db5f2d3a04bb286cb977a7dba903e_1') # this one we know is valid | |
| target_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_target), color)) | |
| cond_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_cond), color)) | |
| target_RT = np.load(os.path.join(filename, '%03d.npy' % index_target)) | |
| cond_RT = np.load(os.path.join(filename, '%03d.npy' % index_cond)) | |
| target_im = torch.zeros_like(target_im) | |
| cond_im = torch.zeros_like(cond_im) | |
| data["image_target"] = target_im | |
| data["image_cond"] = cond_im | |
| data["T"] = self.get_T(target_RT, cond_RT) | |
| if self.postprocess is not None: | |
| data = self.postprocess(data) | |
| return data | |
| def process_im(self, im): | |
| im = im.convert("RGB") | |
| return self.tform(im) | |
| class FolderData(Dataset): | |
| def __init__(self, | |
| root_dir, | |
| caption_file=None, | |
| image_transforms=[], | |
| ext="jpg", | |
| default_caption="", | |
| postprocess=None, | |
| return_paths=False, | |
| ) -> None: | |
| """Create a dataset from a folder of images. | |
| If you pass in a root directory it will be searched for images | |
| ending in ext (ext can be a list) | |
| """ | |
| self.root_dir = Path(root_dir) | |
| self.default_caption = default_caption | |
| self.return_paths = return_paths | |
| if isinstance(postprocess, DictConfig): | |
| postprocess = instantiate_from_config(postprocess) | |
| self.postprocess = postprocess | |
| if caption_file is not None: | |
| with open(caption_file, "rt") as f: | |
| ext = Path(caption_file).suffix.lower() | |
| if ext == ".json": | |
| captions = json.load(f) | |
| elif ext == ".jsonl": | |
| lines = f.readlines() | |
| lines = [json.loads(x) for x in lines] | |
| captions = {x["file_name"]: x["text"].strip("\n") for x in lines} | |
| else: | |
| raise ValueError(f"Unrecognised format: {ext}") | |
| self.captions = captions | |
| else: | |
| self.captions = None | |
| if not isinstance(ext, (tuple, list, ListConfig)): | |
| ext = [ext] | |
| # Only used if there is no caption file | |
| self.paths = [] | |
| for e in ext: | |
| self.paths.extend(sorted(list(self.root_dir.rglob(f"*.{e}")))) | |
| self.tform = make_tranforms(image_transforms) | |
| def __len__(self): | |
| if self.captions is not None: | |
| return len(self.captions.keys()) | |
| else: | |
| return len(self.paths) | |
| def __getitem__(self, index): | |
| data = {} | |
| if self.captions is not None: | |
| chosen = list(self.captions.keys())[index] | |
| caption = self.captions.get(chosen, None) | |
| if caption is None: | |
| caption = self.default_caption | |
| filename = self.root_dir/chosen | |
| else: | |
| filename = self.paths[index] | |
| if self.return_paths: | |
| data["path"] = str(filename) | |
| im = Image.open(filename).convert("RGB") | |
| im = self.process_im(im) | |
| data["image"] = im | |
| if self.captions is not None: | |
| data["txt"] = caption | |
| else: | |
| data["txt"] = self.default_caption | |
| if self.postprocess is not None: | |
| data = self.postprocess(data) | |
| return data | |
| def process_im(self, im): | |
| im = im.convert("RGB") | |
| return self.tform(im) | |
| import random | |
| class TransformDataset(): | |
| def __init__(self, ds, extra_label="sksbspic"): | |
| self.ds = ds | |
| self.extra_label = extra_label | |
| self.transforms = { | |
| "align": transforms.Resize(768), | |
| "centerzoom": transforms.CenterCrop(768), | |
| "randzoom": transforms.RandomCrop(768), | |
| } | |
| def __getitem__(self, index): | |
| data = self.ds[index] | |
| im = data['image'] | |
| im = im.permute(2,0,1) | |
| # In case data is smaller than expected | |
| im = transforms.Resize(1024)(im) | |
| tform_name = random.choice(list(self.transforms.keys())) | |
| im = self.transforms[tform_name](im) | |
| im = im.permute(1,2,0) | |
| data['image'] = im | |
| data['txt'] = data['txt'] + f" {self.extra_label} {tform_name}" | |
| return data | |
| def __len__(self): | |
| return len(self.ds) | |
| def hf_dataset( | |
| name, | |
| image_transforms=[], | |
| image_column="image", | |
| text_column="text", | |
| split='train', | |
| image_key='image', | |
| caption_key='txt', | |
| ): | |
| """Make huggingface dataset with appropriate list of transforms applied | |
| """ | |
| ds = load_dataset(name, split=split) | |
| tform = make_tranforms(image_transforms) | |
| assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}" | |
| assert text_column in ds.column_names, f"Didn't find column {text_column} in {ds.column_names}" | |
| def pre_process(examples): | |
| processed = {} | |
| processed[image_key] = [tform(im) for im in examples[image_column]] | |
| processed[caption_key] = examples[text_column] | |
| return processed | |
| ds.set_transform(pre_process) | |
| return ds | |
| class TextOnly(Dataset): | |
| def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1): | |
| """Returns only captions with dummy images""" | |
| self.output_size = output_size | |
| self.image_key = image_key | |
| self.caption_key = caption_key | |
| if isinstance(captions, Path): | |
| self.captions = self._load_caption_file(captions) | |
| else: | |
| self.captions = captions | |
| if n_gpus > 1: | |
| # hack to make sure that all the captions appear on each gpu | |
| repeated = [n_gpus*[x] for x in self.captions] | |
| self.captions = [] | |
| [self.captions.extend(x) for x in repeated] | |
| def __len__(self): | |
| return len(self.captions) | |
| def __getitem__(self, index): | |
| dummy_im = torch.zeros(3, self.output_size, self.output_size) | |
| dummy_im = rearrange(dummy_im * 2. - 1., 'c h w -> h w c') | |
| return {self.image_key: dummy_im, self.caption_key: self.captions[index]} | |
| def _load_caption_file(self, filename): | |
| with open(filename, 'rt') as f: | |
| captions = f.readlines() | |
| return [x.strip('\n') for x in captions] | |
| import random | |
| import json | |
| class IdRetreivalDataset(FolderData): | |
| def __init__(self, ret_file, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| with open(ret_file, "rt") as f: | |
| self.ret = json.load(f) | |
| def __getitem__(self, index): | |
| data = super().__getitem__(index) | |
| key = self.paths[index].name | |
| matches = self.ret[key] | |
| if len(matches) > 0: | |
| retreived = random.choice(matches) | |
| else: | |
| retreived = key | |
| filename = self.root_dir/retreived | |
| im = Image.open(filename).convert("RGB") | |
| im = self.process_im(im) | |
| # data["match"] = im | |
| data["match"] = torch.cat((data["image"], im), dim=-1) | |
| return data | |