Spaces:
Runtime error
Runtime error
| # based on https://github.com/universome/fvd-comparison/blob/master/compare_models.py; huge thanks! | |
| import os | |
| import numpy as np | |
| import io | |
| import re | |
| import requests | |
| import html | |
| import hashlib | |
| import urllib | |
| import urllib.request | |
| import scipy.linalg | |
| import multiprocessing as mp | |
| import glob | |
| from tqdm import tqdm | |
| from typing import Any, List, Tuple, Union, Dict, Callable | |
| from torchvision.io import read_video | |
| import torch; torch.set_grad_enabled(False) | |
| from einops import rearrange | |
| from nitro.util import isvideo | |
| def compute_frechet_distance(mu_sample,sigma_sample,mu_ref,sigma_ref) -> float: | |
| print('Calculate frechet distance...') | |
| m = np.square(mu_sample - mu_ref).sum() | |
| s, _ = scipy.linalg.sqrtm(np.dot(sigma_sample, sigma_ref), disp=False) # pylint: disable=no-member | |
| fid = np.real(m + np.trace(sigma_sample + sigma_ref - s * 2)) | |
| return float(fid) | |
| def compute_stats(feats: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: | |
| mu = feats.mean(axis=0) # [d] | |
| sigma = np.cov(feats, rowvar=False) # [d, d] | |
| return mu, sigma | |
| def open_url(url: str, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False) -> Any: | |
| """Download the given URL and return a binary-mode file object to access the data.""" | |
| assert num_attempts >= 1 | |
| # Doesn't look like an URL scheme so interpret it as a local filename. | |
| if not re.match('^[a-z]+://', url): | |
| return url if return_filename else open(url, "rb") | |
| # Handle file URLs. This code handles unusual file:// patterns that | |
| # arise on Windows: | |
| # | |
| # file:///c:/foo.txt | |
| # | |
| # which would translate to a local '/c:/foo.txt' filename that's | |
| # invalid. Drop the forward slash for such pathnames. | |
| # | |
| # If you touch this code path, you should test it on both Linux and | |
| # Windows. | |
| # | |
| # Some internet resources suggest using urllib.request.url2pathname() but | |
| # but that converts forward slashes to backslashes and this causes | |
| # its own set of problems. | |
| if url.startswith('file://'): | |
| filename = urllib.parse.urlparse(url).path | |
| if re.match(r'^/[a-zA-Z]:', filename): | |
| filename = filename[1:] | |
| return filename if return_filename else open(filename, "rb") | |
| url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest() | |
| # Download. | |
| url_name = None | |
| url_data = None | |
| with requests.Session() as session: | |
| if verbose: | |
| print("Downloading %s ..." % url, end="", flush=True) | |
| for attempts_left in reversed(range(num_attempts)): | |
| try: | |
| with session.get(url) as res: | |
| res.raise_for_status() | |
| if len(res.content) == 0: | |
| raise IOError("No data received") | |
| if len(res.content) < 8192: | |
| content_str = res.content.decode("utf-8") | |
| if "download_warning" in res.headers.get("Set-Cookie", ""): | |
| links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link] | |
| if len(links) == 1: | |
| url = requests.compat.urljoin(url, links[0]) | |
| raise IOError("Google Drive virus checker nag") | |
| if "Google Drive - Quota exceeded" in content_str: | |
| raise IOError("Google Drive download quota exceeded -- please try again later") | |
| match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", "")) | |
| url_name = match[1] if match else url | |
| url_data = res.content | |
| if verbose: | |
| print(" done") | |
| break | |
| except KeyboardInterrupt: | |
| raise | |
| except: | |
| if not attempts_left: | |
| if verbose: | |
| print(" failed") | |
| raise | |
| if verbose: | |
| print(".", end="", flush=True) | |
| # Return data as file object. | |
| assert not return_filename | |
| return io.BytesIO(url_data) | |
| def load_video(ip): | |
| vid, *_ = read_video(ip) | |
| vid = rearrange(vid, 't h w c -> t c h w').to(torch.uint8) | |
| return vid | |
| def get_data_from_str(input_str,nprc = None): | |
| assert os.path.isdir(input_str), f'Specified input folder "{input_str}" is not a directory' | |
| vid_filelist = glob.glob(os.path.join(input_str,'*.mp4')) | |
| print(f'Found {len(vid_filelist)} videos in dir {input_str}') | |
| if nprc is None: | |
| try: | |
| nprc = mp.cpu_count() | |
| except NotImplementedError: | |
| print('WARNING: cpu_count() not avlailable, using only 1 cpu for video loading') | |
| nprc = 1 | |
| pool = mp.Pool(processes=nprc) | |
| vids = [] | |
| for v in tqdm(pool.imap_unordered(load_video,vid_filelist),total=len(vid_filelist),desc='Loading videos...'): | |
| vids.append(v) | |
| vids = torch.stack(vids,dim=0).float() | |
| return vids | |
| def get_stats(stats): | |
| assert os.path.isfile(stats) and stats.endswith('.npz'), f'no stats found under {stats}' | |
| print(f'Using precomputed statistics under {stats}') | |
| stats = np.load(stats) | |
| stats = {key: stats[key] for key in stats.files} | |
| return stats | |
| def compute_fvd(ref_input, sample_input, bs=32, | |
| ref_stats=None, | |
| sample_stats=None, | |
| nprc_load=None): | |
| calc_stats = ref_stats is None or sample_stats is None | |
| if calc_stats: | |
| only_ref = sample_stats is not None | |
| only_sample = ref_stats is not None | |
| if isinstance(ref_input,str) and not only_sample: | |
| ref_input = get_data_from_str(ref_input,nprc_load) | |
| if isinstance(sample_input, str) and not only_ref: | |
| sample_input = get_data_from_str(sample_input, nprc_load) | |
| stats = compute_statistics(sample_input,ref_input, | |
| device='cuda' if torch.cuda.is_available() else 'cpu', | |
| bs=bs, | |
| only_ref=only_ref, | |
| only_sample=only_sample) | |
| if only_ref: | |
| stats.update(get_stats(sample_stats)) | |
| elif only_sample: | |
| stats.update(get_stats(ref_stats)) | |
| else: | |
| stats = get_stats(sample_stats) | |
| stats.update(get_stats(ref_stats)) | |
| fvd = compute_frechet_distance(**stats) | |
| return {'FVD' : fvd,} | |
| def compute_statistics(videos_fake, videos_real, device: str='cuda', bs=32, only_ref=False,only_sample=False) -> Dict: | |
| detector_url = 'https://www.dropbox.com/s/ge9e5ujwgetktms/i3d_torchscript.pt?dl=1' | |
| detector_kwargs = dict(rescale=True, resize=True, return_features=True) # Return raw features before the softmax layer. | |
| with open_url(detector_url, verbose=False) as f: | |
| detector = torch.jit.load(f).eval().to(device) | |
| assert not (only_sample and only_ref), 'only_ref and only_sample arguments are mutually exclusive' | |
| ref_embed, sample_embed = [], [] | |
| info = f'Computing I3D activations for FVD score with batch size {bs}' | |
| if only_ref: | |
| if not isvideo(videos_real): | |
| # if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255] | |
| videos_real = torch.from_numpy(videos_real).permute(0, 4, 1, 2, 3).float() | |
| print(videos_real.shape) | |
| if videos_real.shape[0] % bs == 0: | |
| n_secs = videos_real.shape[0] // bs | |
| else: | |
| n_secs = videos_real.shape[0] // bs + 1 | |
| videos_real = torch.tensor_split(videos_real, n_secs, dim=0) | |
| for ref_v in tqdm(videos_real, total=len(videos_real),desc=info): | |
| feats_ref = detector(ref_v.to(device).contiguous(), **detector_kwargs).cpu().numpy() | |
| ref_embed.append(feats_ref) | |
| elif only_sample: | |
| if not isvideo(videos_fake): | |
| # if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255] | |
| videos_fake = torch.from_numpy(videos_fake).permute(0, 4, 1, 2, 3).float() | |
| print(videos_fake.shape) | |
| if videos_fake.shape[0] % bs == 0: | |
| n_secs = videos_fake.shape[0] // bs | |
| else: | |
| n_secs = videos_fake.shape[0] // bs + 1 | |
| videos_real = torch.tensor_split(videos_real, n_secs, dim=0) | |
| for sample_v in tqdm(videos_fake, total=len(videos_real),desc=info): | |
| feats_sample = detector(sample_v.to(device).contiguous(), **detector_kwargs).cpu().numpy() | |
| sample_embed.append(feats_sample) | |
| else: | |
| if not isvideo(videos_real): | |
| # if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255] | |
| videos_real = torch.from_numpy(videos_real).permute(0, 4, 1, 2, 3).float() | |
| if not isvideo(videos_fake): | |
| videos_fake = torch.from_numpy(videos_fake).permute(0, 4, 1, 2, 3).float() | |
| if videos_fake.shape[0] % bs == 0: | |
| n_secs = videos_fake.shape[0] // bs | |
| else: | |
| n_secs = videos_fake.shape[0] // bs + 1 | |
| videos_real = torch.tensor_split(videos_real, n_secs, dim=0) | |
| videos_fake = torch.tensor_split(videos_fake, n_secs, dim=0) | |
| for ref_v, sample_v in tqdm(zip(videos_real,videos_fake),total=len(videos_fake),desc=info): | |
| # print(ref_v.shape) | |
| # ref_v = torch.nn.functional.interpolate(ref_v, size=(sample_v.shape[2], 256, 256), mode='trilinear', align_corners=False) | |
| # sample_v = torch.nn.functional.interpolate(sample_v, size=(sample_v.shape[2], 256, 256), mode='trilinear', align_corners=False) | |
| feats_sample = detector(sample_v.to(device).contiguous(), **detector_kwargs).cpu().numpy() | |
| feats_ref = detector(ref_v.to(device).contiguous(), **detector_kwargs).cpu().numpy() | |
| sample_embed.append(feats_sample) | |
| ref_embed.append(feats_ref) | |
| out = dict() | |
| if len(sample_embed) > 0: | |
| sample_embed = np.concatenate(sample_embed,axis=0) | |
| mu_sample, sigma_sample = compute_stats(sample_embed) | |
| out.update({'mu_sample': mu_sample, | |
| 'sigma_sample': sigma_sample}) | |
| if len(ref_embed) > 0: | |
| ref_embed = np.concatenate(ref_embed,axis=0) | |
| mu_ref, sigma_ref = compute_stats(ref_embed) | |
| out.update({'mu_ref': mu_ref, | |
| 'sigma_ref': sigma_ref}) | |
| return out | |