Spaces:
Runtime error
Runtime error
| import json | |
| from itertools import chain | |
| from pathlib import Path | |
| from typing import Iterable, Dict, List, Callable, Any | |
| from collections import defaultdict | |
| from tqdm import tqdm | |
| from taming.data.annotated_objects_dataset import AnnotatedObjectsDataset | |
| from taming.data.helper_types import Annotation, ImageDescription, Category | |
| COCO_PATH_STRUCTURE = { | |
| 'train': { | |
| 'top_level': '', | |
| 'instances_annotations': 'annotations/instances_train2017.json', | |
| 'stuff_annotations': 'annotations/stuff_train2017.json', | |
| 'files': 'train2017' | |
| }, | |
| 'validation': { | |
| 'top_level': '', | |
| 'instances_annotations': 'annotations/instances_val2017.json', | |
| 'stuff_annotations': 'annotations/stuff_val2017.json', | |
| 'files': 'val2017' | |
| } | |
| } | |
| def load_image_descriptions(description_json: List[Dict]) -> Dict[str, ImageDescription]: | |
| return { | |
| str(img['id']): ImageDescription( | |
| id=img['id'], | |
| license=img.get('license'), | |
| file_name=img['file_name'], | |
| coco_url=img['coco_url'], | |
| original_size=(img['width'], img['height']), | |
| date_captured=img.get('date_captured'), | |
| flickr_url=img.get('flickr_url') | |
| ) | |
| for img in description_json | |
| } | |
| def load_categories(category_json: Iterable) -> Dict[str, Category]: | |
| return {str(cat['id']): Category(id=str(cat['id']), super_category=cat['supercategory'], name=cat['name']) | |
| for cat in category_json if cat['name'] != 'other'} | |
| def load_annotations(annotations_json: List[Dict], image_descriptions: Dict[str, ImageDescription], | |
| category_no_for_id: Callable[[str], int], split: str) -> Dict[str, List[Annotation]]: | |
| annotations = defaultdict(list) | |
| total = sum(len(a) for a in annotations_json) | |
| for ann in tqdm(chain(*annotations_json), f'Loading {split} annotations', total=total): | |
| image_id = str(ann['image_id']) | |
| if image_id not in image_descriptions: | |
| raise ValueError(f'image_id [{image_id}] has no image description.') | |
| category_id = ann['category_id'] | |
| try: | |
| category_no = category_no_for_id(str(category_id)) | |
| except KeyError: | |
| continue | |
| width, height = image_descriptions[image_id].original_size | |
| bbox = (ann['bbox'][0] / width, ann['bbox'][1] / height, ann['bbox'][2] / width, ann['bbox'][3] / height) | |
| annotations[image_id].append( | |
| Annotation( | |
| id=ann['id'], | |
| area=bbox[2]*bbox[3], # use bbox area | |
| is_group_of=ann['iscrowd'], | |
| image_id=ann['image_id'], | |
| bbox=bbox, | |
| category_id=str(category_id), | |
| category_no=category_no | |
| ) | |
| ) | |
| return dict(annotations) | |
| class AnnotatedObjectsCoco(AnnotatedObjectsDataset): | |
| def __init__(self, use_things: bool = True, use_stuff: bool = True, **kwargs): | |
| """ | |
| @param data_path: is the path to the following folder structure: | |
| coco/ | |
| βββ annotations | |
| β βββ instances_train2017.json | |
| β βββ instances_val2017.json | |
| β βββ stuff_train2017.json | |
| β βββ stuff_val2017.json | |
| βββ train2017 | |
| β βββ 000000000009.jpg | |
| β βββ 000000000025.jpg | |
| β βββ ... | |
| βββ val2017 | |
| β βββ 000000000139.jpg | |
| β βββ 000000000285.jpg | |
| β βββ ... | |
| @param: split: one of 'train' or 'validation' | |
| @param: desired image size (give square images) | |
| """ | |
| super().__init__(**kwargs) | |
| self.use_things = use_things | |
| self.use_stuff = use_stuff | |
| with open(self.paths['instances_annotations']) as f: | |
| inst_data_json = json.load(f) | |
| with open(self.paths['stuff_annotations']) as f: | |
| stuff_data_json = json.load(f) | |
| category_jsons = [] | |
| annotation_jsons = [] | |
| if self.use_things: | |
| category_jsons.append(inst_data_json['categories']) | |
| annotation_jsons.append(inst_data_json['annotations']) | |
| if self.use_stuff: | |
| category_jsons.append(stuff_data_json['categories']) | |
| annotation_jsons.append(stuff_data_json['annotations']) | |
| self.categories = load_categories(chain(*category_jsons)) | |
| self.filter_categories() | |
| self.setup_category_id_and_number() | |
| self.image_descriptions = load_image_descriptions(inst_data_json['images']) | |
| annotations = load_annotations(annotation_jsons, self.image_descriptions, self.get_category_number, self.split) | |
| self.annotations = self.filter_object_number(annotations, self.min_object_area, | |
| self.min_objects_per_image, self.max_objects_per_image) | |
| self.image_ids = list(self.annotations.keys()) | |
| self.clean_up_annotations_and_image_descriptions() | |
| def get_path_structure(self) -> Dict[str, str]: | |
| if self.split not in COCO_PATH_STRUCTURE: | |
| raise ValueError(f'Split [{self.split} does not exist for COCO data.]') | |
| return COCO_PATH_STRUCTURE[self.split] | |
| def get_image_path(self, image_id: str) -> Path: | |
| return self.paths['files'].joinpath(self.image_descriptions[str(image_id)].file_name) | |
| def get_image_description(self, image_id: str) -> Dict[str, Any]: | |
| # noinspection PyProtectedMember | |
| return self.image_descriptions[image_id]._asdict() | |