Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import sys
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from transformers import pipeline, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
|
| 5 |
+
|
| 6 |
+
logging.basicConfig(
|
| 7 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 8 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
| 9 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
| 10 |
+
)
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
logger.setLevel(logging.DEBUG)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
LARGE_MODEL_BY_LANGUAGE = {
|
| 16 |
+
"Arabic": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-arabic", "has_lm": False},
|
| 17 |
+
"Chinese": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn", "has_lm": False},
|
| 18 |
+
"Dutch": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-dutch", "has_lm": True},
|
| 19 |
+
"English": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-english", "has_lm": True},
|
| 20 |
+
"Finnish": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-finnish", "has_lm": False},
|
| 21 |
+
"French": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-french", "has_lm": True},
|
| 22 |
+
"German": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-german", "has_lm": True},
|
| 23 |
+
"Greek": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-greek", "has_lm": False},
|
| 24 |
+
"Hungarian": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-hungarian", "has_lm": False},
|
| 25 |
+
"Italian": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-italian", "has_lm": True},
|
| 26 |
+
"Japanese": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-japanese", "has_lm": False},
|
| 27 |
+
"Persian": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-persian", "has_lm": False},
|
| 28 |
+
"Polish": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-polish", "has_lm": True},
|
| 29 |
+
"Portuguese": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-portuguese", "has_lm": True},
|
| 30 |
+
"Russian": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-russian", "has_lm": True},
|
| 31 |
+
"Spanish": {"model_id": "jonatasgrosman/wav2vec2-large-xlsr-53-spanish", "has_lm": True},
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
XLARGE_MODEL_BY_LANGUAGE = {
|
| 35 |
+
"Dutch": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-dutch", "has_lm": True},
|
| 36 |
+
"English": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-english", "has_lm": True},
|
| 37 |
+
"French": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-french", "has_lm": True},
|
| 38 |
+
"German": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-german", "has_lm": True},
|
| 39 |
+
"Italian": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-italian", "has_lm": True},
|
| 40 |
+
"Polish": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-polish", "has_lm": True},
|
| 41 |
+
"Portuguese": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-portuguese", "has_lm": True},
|
| 42 |
+
"Russian": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-russian", "has_lm": True},
|
| 43 |
+
"Spanish": {"model_id": "jonatasgrosman/wav2vec2-xls-r-1b-spanish", "has_lm": True},
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# LANGUAGES = sorted(LARGE_MODEL_BY_LANGUAGE.keys())
|
| 48 |
+
|
| 49 |
+
# the container given by HF has 16GB of RAM, so we need to limit the number of models to load
|
| 50 |
+
LANGUAGES = sorted(XLARGE_MODEL_BY_LANGUAGE.keys())
|
| 51 |
+
CACHED_MODELS_BY_ID = {}
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def run(input_file, language, decoding_type, history, model_size="300M"):
|
| 55 |
+
|
| 56 |
+
logger.info(f"Running ASR {language}-{model_size}-{decoding_type} for {input_file}")
|
| 57 |
+
|
| 58 |
+
history = history or []
|
| 59 |
+
|
| 60 |
+
if model_size == "300M":
|
| 61 |
+
model = LARGE_MODEL_BY_LANGUAGE.get(language, None)
|
| 62 |
+
else:
|
| 63 |
+
model = XLARGE_MODEL_BY_LANGUAGE.get(language, None)
|
| 64 |
+
|
| 65 |
+
if model is None:
|
| 66 |
+
history.append({
|
| 67 |
+
"error_message": f"Model size {model_size} not found for {language} language :("
|
| 68 |
+
})
|
| 69 |
+
elif decoding_type == "LM" and not model["has_lm"]:
|
| 70 |
+
history.append({
|
| 71 |
+
"error_message": f"LM not available for {language} language :("
|
| 72 |
+
})
|
| 73 |
+
else:
|
| 74 |
+
|
| 75 |
+
# model_instance = AutoModelForCTC.from_pretrained(model["model_id"])
|
| 76 |
+
model_instance = CACHED_MODELS_BY_ID.get(model["model_id"], None)
|
| 77 |
+
if model_instance is None:
|
| 78 |
+
model_instance = AutoModelForCTC.from_pretrained(model["model_id"])
|
| 79 |
+
CACHED_MODELS_BY_ID[model["model_id"]] = model_instance
|
| 80 |
+
|
| 81 |
+
if decoding_type == "LM":
|
| 82 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(model["model_id"])
|
| 83 |
+
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
|
| 84 |
+
feature_extractor=processor.feature_extractor, decoder=processor.decoder)
|
| 85 |
+
else:
|
| 86 |
+
processor = Wav2Vec2Processor.from_pretrained(model["model_id"])
|
| 87 |
+
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
|
| 88 |
+
feature_extractor=processor.feature_extractor, decoder=None)
|
| 89 |
+
|
| 90 |
+
transcription = asr(input_file, chunk_length_s=5, stride_length_s=1)["text"]
|
| 91 |
+
|
| 92 |
+
logger.info(f"Transcription for {input_file}: {transcription}")
|
| 93 |
+
|
| 94 |
+
history.append({
|
| 95 |
+
"model_id": model["model_id"],
|
| 96 |
+
"language": language,
|
| 97 |
+
"model_size": model_size,
|
| 98 |
+
"decoding_type": decoding_type,
|
| 99 |
+
"transcription": transcription,
|
| 100 |
+
"error_message": None
|
| 101 |
+
})
|
| 102 |
+
|
| 103 |
+
html_output = "<div class='result'>"
|
| 104 |
+
for item in history:
|
| 105 |
+
if item["error_message"] is not None:
|
| 106 |
+
html_output += f"<div class='result_item result_item_error'>{item['error_message']}</div>"
|
| 107 |
+
else:
|
| 108 |
+
url_suffix = " + LM" if item["decoding_type"] == "LM" else ""
|
| 109 |
+
html_output += "<div class='result_item result_item_success'>"
|
| 110 |
+
html_output += f'<strong><a target="_blank" href="https://huggingface.co/{item["model_id"]}">{item["model_id"]}{url_suffix}</a></strong><br/><br/>'
|
| 111 |
+
html_output += f'{item["transcription"]}<br/>'
|
| 112 |
+
html_output += "</div>"
|
| 113 |
+
html_output += "</div>"
|
| 114 |
+
|
| 115 |
+
return html_output, history
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
gr.Interface(
|
| 119 |
+
run,
|
| 120 |
+
inputs=[
|
| 121 |
+
gr.inputs.Audio(source="microphone", type="filepath", label="Record something..."),
|
| 122 |
+
gr.inputs.Radio(label="Language", choices=LANGUAGES),
|
| 123 |
+
gr.inputs.Radio(label="Decoding type", choices=["greedy", "LM"]),
|
| 124 |
+
# gr.inputs.Radio(label="Model size", choices=["300M", "1B"]),
|
| 125 |
+
"state"
|
| 126 |
+
],
|
| 127 |
+
outputs=[
|
| 128 |
+
gr.outputs.HTML(label="Outputs"),
|
| 129 |
+
"state"
|
| 130 |
+
],
|
| 131 |
+
title="Automatic Speech Recognition",
|
| 132 |
+
description="",
|
| 133 |
+
css="""
|
| 134 |
+
.result {display:flex;flex-direction:column}
|
| 135 |
+
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
|
| 136 |
+
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
|
| 137 |
+
.result_item_error {background-color:#ff7070;color:white;align-self:start}
|
| 138 |
+
""",
|
| 139 |
+
allow_screenshot=False,
|
| 140 |
+
allow_flagging="never",
|
| 141 |
+
theme="grass"
|
| 142 |
+
).launch(enable_queue=True)
|