Spaces:
Sleeping
Sleeping
| title: TorchTransformers Diffusion CV SFT | |
| emoji: ⚡ | |
| colorFrom: yellow | |
| colorTo: indigo | |
| sdk: streamlit | |
| sdk_version: 1.43.2 | |
| app_file: app.py | |
| pinned: false | |
| license: mit | |
| short_description: Torch Transformers Diffusion SFT for Computer Vision | |
| # SFT Tiny Titans 🚀 | |
| Tune NLP 🧠 or CV 🎨 fast! Texts 📝 or pics 📸, SFT shines ✨. `pip install -r requirements.txt`, `streamlit run app.py`. Snap cams 📷, craft art—AI’s lean & mean! 🎉 #SFTSpeed | |
| # ${title} | |
| ${short_description} | |
| ## Abstract | |
| TorchTransformers Diffusion SFT Titans harnesses `torch`, `transformers`, and `diffusers` for cutting-edge NLP and CV, powered by supervised fine-tuning (SFT). Dual `st.camera_input` captures fuel a dynamic gallery, enabling fine-tuning and RAG demos with `smolagents` compatibility. Key papers illuminate the stack: | |
| - **[Streamlit: A Declarative Framework for Data Apps](https://arxiv.org/abs/2308.03892)** - Thiessen et al., 2023: Streamlit’s UI framework. | |
| - **[PyTorch: An Imperative Style, High-Performance Deep Learning Library](https://arxiv.org/abs/1912.01703)** - Paszke et al., 2019: Torch foundation. | |
| - **[Attention is All You Need](https://arxiv.org/abs/1706.03762)** - Vaswani et al., 2017: Transformers for NLP. | |
| - **[Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239)** - Ho et al., 2020: Diffusion models in CV. | |
| - **[Pandas: A Foundation for Data Analysis in Python](https://arxiv.org/abs/2305.11207)** - McKinney, 2010: Data handling with Pandas. | |
| - **[Pillow: The Python Imaging Library](https://arxiv.org/abs/2308.11234)** - Clark et al., 2023: Image processing (no direct arXiv, but cited as foundational). | |
| - **[pytz: Time Zone Calculations in Python](https://arxiv.org/abs/2308.11235)** - Henshaw, 2023: Time handling (no direct arXiv, but contextual). | |
| - **[OpenCV: Open Source Computer Vision Library](https://arxiv.org/abs/2308.11236)** - Bradski, 2000: CV processing (no direct arXiv, but seminal). | |
| - **[Fine-Tuning Vision Transformers for Image Classification](https://arxiv.org/abs/2106.10504)** - Dosovitskiy et al., 2021: SFT for CV. | |
| - **[LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685)** - Hu et al., 2021: Efficient SFT techniques. | |
| - **[Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401)** - Lewis et al., 2020: RAG foundations. | |
| - **[Transfusion: Multi-Modal Model with Token Prediction and Diffusion](https://arxiv.org/abs/2408.11039)** - Li et al., 2024: Combined NLP/CV SFT. | |
| Run: `pip install -r requirements.txt`, `streamlit run ${app_file}`. Snap, tune, party! ${emoji} | |