Spaces:
Sleeping
Sleeping
| #!/usr/bin/env python3 | |
| import os | |
| import base64 | |
| import streamlit as st | |
| import csv | |
| import time | |
| from dataclasses import dataclass | |
| import zipfile | |
| import logging | |
| import av | |
| from streamlit_webrtc import webrtc_streamer, VideoProcessorBase, WebRtcMode | |
| # Logging setup | |
| logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
| logger = logging.getLogger(__name__) | |
| log_records = [] | |
| class LogCaptureHandler(logging.Handler): | |
| def emit(self, record): | |
| log_records.append(record) | |
| logger.addHandler(LogCaptureHandler()) | |
| st.set_page_config(page_title="SFT Tiny Titans 🚀", page_icon="🤖", layout="wide", initial_sidebar_state="expanded") | |
| # Model Configurations | |
| class ModelConfig: | |
| name: str | |
| base_model: str | |
| model_type: str = "causal_lm" | |
| def model_path(self): | |
| return f"models/{self.name}" | |
| class DiffusionConfig: | |
| name: str | |
| base_model: str | |
| def model_path(self): | |
| return f"diffusion_models/{self.name}" | |
| # Lazy-loaded Builders | |
| class ModelBuilder: | |
| def __init__(self): | |
| self.config = None | |
| self.model = None | |
| self.tokenizer = None | |
| def load_model(self, model_path: str, config: ModelConfig): | |
| try: | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| logger.info(f"Loading NLP model: {model_path}") | |
| self.model = AutoModelForCausalLM.from_pretrained(model_path) | |
| self.tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| if self.tokenizer.pad_token is None: | |
| self.tokenizer.pad_token = self.tokenizer.eos_token | |
| self.config = config | |
| self.model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) | |
| logger.info("NLP model loaded successfully") | |
| except Exception as e: | |
| logger.error(f"Error loading NLP model: {str(e)}") | |
| raise | |
| def fine_tune(self, csv_path): | |
| try: | |
| from torch.utils.data import Dataset, DataLoader | |
| import torch | |
| logger.info(f"Starting NLP fine-tuning with {csv_path}") | |
| class SFTDataset(Dataset): | |
| def __init__(self, data, tokenizer): | |
| self.data = data | |
| self.tokenizer = tokenizer | |
| def __len__(self): | |
| return len(self.data) | |
| def __getitem__(self, idx): | |
| prompt = self.data[idx]["prompt"] | |
| response = self.data[idx]["response"] | |
| inputs = self.tokenizer(f"{prompt} {response}", return_tensors="pt", padding="max_length", max_length=128, truncation=True) | |
| labels = inputs["input_ids"].clone() | |
| labels[0, :len(self.tokenizer(prompt)["input_ids"][0])] = -100 | |
| return {"input_ids": inputs["input_ids"][0], "attention_mask": inputs["attention_mask"][0], "labels": labels[0]} | |
| data = [] | |
| with open(csv_path, "r") as f: | |
| reader = csv.DictReader(f) | |
| for row in reader: | |
| data.append({"prompt": row["prompt"], "response": row["response"]}) | |
| dataset = SFTDataset(data, self.tokenizer) | |
| dataloader = DataLoader(dataset, batch_size=2) | |
| optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5) | |
| self.model.train() | |
| for _ in range(1): | |
| for batch in dataloader: | |
| optimizer.zero_grad() | |
| outputs = self.model(**{k: v.to(self.model.device) for k, v in batch.items()}) | |
| outputs.loss.backward() | |
| optimizer.step() | |
| logger.info("NLP fine-tuning completed") | |
| except Exception as e: | |
| logger.error(f"Error in NLP fine-tuning: {str(e)}") | |
| raise | |
| def evaluate(self, prompt: str): | |
| try: | |
| import torch | |
| logger.info(f"Evaluating NLP with prompt: {prompt}") | |
| self.model.eval() | |
| with torch.no_grad(): | |
| inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device) | |
| outputs = self.model.generate(**inputs, max_new_tokens=50) | |
| result = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| logger.info(f"NLP evaluation result: {result}") | |
| return result | |
| except Exception as e: | |
| logger.error(f"Error in NLP evaluation: {str(e)}") | |
| raise | |
| class DiffusionBuilder: | |
| def __init__(self): | |
| self.config = None | |
| self.pipeline = None | |
| def load_model(self, model_path: str, config: DiffusionConfig): | |
| try: | |
| from diffusers import StableDiffusionPipeline | |
| import torch | |
| logger.info(f"Loading diffusion model: {model_path}") | |
| self.pipeline = StableDiffusionPipeline.from_pretrained(model_path) | |
| self.pipeline.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) | |
| self.config = config | |
| logger.info("Diffusion model loaded successfully") | |
| except Exception as e: | |
| logger.error(f"Error loading diffusion model: {str(e)}") | |
| raise | |
| def fine_tune(self, images, texts): | |
| try: | |
| import torch | |
| from PIL import Image | |
| import numpy as np | |
| logger.info("Starting diffusion fine-tuning") | |
| optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5) | |
| self.pipeline.unet.train() | |
| for _ in range(1): | |
| for img, text in zip(images, texts): | |
| optimizer.zero_grad() | |
| img_tensor = torch.tensor(np.array(img)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device) / 255.0 | |
| latents = self.pipeline.vae.encode(img_tensor).latent_dist.sample() | |
| noise = torch.randn_like(latents) | |
| timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (1,), device=latents.device) | |
| noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps) | |
| text_emb = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0] | |
| pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_emb).sample | |
| loss = torch.nn.functional.mse_loss(pred_noise, noise) | |
| loss.backward() | |
| optimizer.step() | |
| logger.info("Diffusion fine-tuning completed") | |
| except Exception as e: | |
| logger.error(f"Error in diffusion fine-tuning: {str(e)}") | |
| raise | |
| def generate(self, prompt: str): | |
| try: | |
| logger.info(f"Generating image with prompt: {prompt}") | |
| img = self.pipeline(prompt, num_inference_steps=20).images[0] | |
| logger.info("Image generated successfully") | |
| return img | |
| except Exception as e: | |
| logger.error(f"Error in image generation: {str(e)}") | |
| raise | |
| # Utilities | |
| def get_download_link(file_path, mime_type="text/plain", label="Download"): | |
| with open(file_path, 'rb') as f: | |
| data = f.read() | |
| b64 = base64.b64encode(data).decode() | |
| return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>' | |
| def generate_filename(sequence, ext="png"): | |
| from datetime import datetime | |
| import pytz | |
| central = pytz.timezone('US/Central') | |
| timestamp = datetime.now(central).strftime("%d%m%Y%H%M%S%p") | |
| return f"{sequence}{timestamp}.{ext}" | |
| def get_gallery_files(file_types): | |
| import glob | |
| return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")]) | |
| def zip_files(files, zip_name): | |
| with zipfile.ZipFile(zip_name, 'w', zipfile.ZIP_DEFLATED) as zipf: | |
| for file in files: | |
| zipf.write(file, os.path.basename(file)) | |
| return zip_name | |
| # Video Processor for WebRTC | |
| class CameraProcessor(VideoProcessorBase): | |
| def __init__(self): | |
| self.snapshot = None | |
| self.recording = False | |
| self.frames = [] | |
| self.start_time = None | |
| def recv(self, frame): | |
| from PIL import Image | |
| img = frame.to_image() | |
| self.snapshot = img | |
| if self.recording and time.time() - self.start_time < 10: | |
| self.frames.append(frame.to_ndarray(format="bgr24")) | |
| return av.VideoFrame.from_image(img) | |
| def take_snapshot(self): | |
| from PIL import Image | |
| return self.snapshot | |
| def start_recording(self): | |
| self.recording = True | |
| self.frames = [] | |
| self.start_time = time.time() | |
| def stop_recording(self): | |
| self.recording = False | |
| return self.frames | |
| # Main App | |
| st.title("SFT Tiny Titans 🚀 (Dual Cam Action!)") | |
| # Sidebar Galleries | |
| st.sidebar.header("Captured Media 🎨") | |
| gallery_container = st.sidebar.empty() | |
| def update_gallery(): | |
| media_files = get_gallery_files(["png", "mp4"]) | |
| with gallery_container: | |
| if media_files: | |
| cols = st.columns(2) | |
| for idx, file in enumerate(media_files[:4]): | |
| with cols[idx % 2]: | |
| if file.endswith(".png"): | |
| from PIL import Image | |
| st.image(Image.open(file), caption=file.split('/')[-1], use_container_width=True) | |
| elif file.endswith(".mp4"): | |
| st.video(file) | |
| # Sidebar Model Management | |
| st.sidebar.subheader("Model Hub 🗂️") | |
| model_type = st.sidebar.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"]) | |
| model_options = { | |
| "NLP (Causal LM)": "HuggingFaceTB/SmolLM-135M", | |
| "CV (Diffusion)": ["CompVis/stable-diffusion-v1-4", "stabilityai/stable-diffusion-2-base", "runwayml/stable-diffusion-v1-5"] | |
| } | |
| selected_model = st.sidebar.selectbox("Select Model", ["None"] + ([model_options[model_type]] if "NLP" in model_type else model_options[model_type])) | |
| if selected_model != "None" and st.sidebar.button("Load Model 📂"): | |
| builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder() | |
| config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=selected_model) | |
| with st.spinner("Loading... ⏳"): | |
| try: | |
| builder.load_model(selected_model, config) | |
| st.session_state['builder'] = builder | |
| st.session_state['model_loaded'] = True | |
| st.success("Model loaded! 🎉") | |
| except Exception as e: | |
| st.error(f"Load failed: {str(e)}") | |
| # Tabs | |
| tab1, tab2, tab3, tab4 = st.tabs(["Build Titan 🌱", "Camera Snap 📷", "Fine-Tune Titans 🔧", "Test Titans 🧪"]) | |
| with tab1: | |
| st.header("Build Titan 🌱 (Quick Start!)") | |
| model_type = st.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"], key="build_type") | |
| base_model = st.selectbox("Select Model", model_options[model_type], key="build_model") | |
| if st.button("Download Model ⬇️"): | |
| config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=base_model) | |
| builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder() | |
| with st.spinner("Fetching... ⏳"): | |
| try: | |
| builder.load_model(base_model, config) | |
| st.session_state['builder'] = builder | |
| st.session_state['model_loaded'] = True | |
| st.success("Titan up! 🎉") | |
| except Exception as e: | |
| st.error(f"Download failed: {str(e)}") | |
| with tab2: | |
| st.header("Camera Snap 📷 (Dual Live Feed!)") | |
| cols = st.columns(2) | |
| processors = {} | |
| for i in range(2): | |
| with cols[i]: | |
| st.subheader(f"Camera {i}") | |
| key = f"camera_{i}" | |
| processors[key] = webrtc_streamer( | |
| key=key, | |
| mode=WebRtcMode.SENDRECV, | |
| video_processor_factory=CameraProcessor, | |
| frontend_rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]} | |
| ) | |
| if processors[key].video_processor: | |
| if st.button(f"Capture 📸 Cam {i}", key=f"snap_{i}"): | |
| logger.info(f"Capturing snapshot from Camera {i}") | |
| try: | |
| snapshot = processors[key].video_processor.take_snapshot() | |
| if snapshot: | |
| filename = generate_filename(i) | |
| snapshot.save(filename) | |
| st.image(snapshot, caption=filename, use_container_width=True) | |
| logger.info(f"Saved snapshot: {filename}") | |
| if 'captured_images' not in st.session_state: | |
| st.session_state['captured_images'] = [] | |
| st.session_state['captured_images'].append(filename) | |
| update_gallery() | |
| except Exception as e: | |
| st.error(f"Snapshot failed: {str(e)}") | |
| logger.error(f"Error capturing snapshot: {str(e)}") | |
| record_key = f"record_{i}" | |
| if record_key not in st.session_state: | |
| st.session_state[record_key] = False | |
| if st.button(f"{'Stop' if st.session_state[record_key] else 'Record'} 🎥 Cam {i}", key=f"rec_{i}"): | |
| if not st.session_state[record_key]: | |
| logger.info(f"Starting recording from Camera {i}") | |
| try: | |
| processors[key].video_processor.start_recording() | |
| st.session_state[record_key] = True | |
| except Exception as e: | |
| st.error(f"Start recording failed: {str(e)}") | |
| logger.error(f"Error starting recording: {str(e)}") | |
| else: | |
| logger.info(f"Stopping recording from Camera {i}") | |
| try: | |
| frames = processors[key].video_processor.stop_recording() | |
| if frames: | |
| mp4_filename = generate_filename(i, "mp4") | |
| with av.open(mp4_filename, "w") as container: | |
| stream = container.add_stream("h264", rate=30) | |
| stream.width = frames[0].shape[1] | |
| stream.height = frames[0].shape[0] | |
| for frame in frames: | |
| av_frame = av.VideoFrame.from_ndarray(frame, format="bgr24") | |
| for packet in stream.encode(av_frame): | |
| container.mux(packet) | |
| for packet in stream.encode(): | |
| container.mux(packet) | |
| st.video(mp4_filename) | |
| logger.info(f"Saved video: {mp4_filename}") | |
| # Slice into 10 frames | |
| sliced_images = [] | |
| step = max(1, len(frames) // 10) | |
| for j in range(0, len(frames), step): | |
| if len(sliced_images) < 10: | |
| img = Image.fromarray(frames[j][:, :, ::-1]) # BGR to RGB | |
| img_filename = generate_filename(f"{i}_{len(sliced_images)}") | |
| img.save(img_filename) | |
| sliced_images.append(img_filename) | |
| st.image(img, caption=img_filename, use_container_width=True) | |
| st.session_state['captured_images'] = st.session_state.get('captured_images', []) + sliced_images | |
| logger.info(f"Sliced video into {len(sliced_images)} images") | |
| update_gallery() | |
| st.session_state[record_key] = False | |
| except Exception as e: | |
| st.error(f"Stop recording failed: {str(e)}") | |
| logger.error(f"Error stopping recording: {str(e)}") | |
| with tab3: | |
| st.header("Fine-Tune Titans 🔧 (Tune Fast!)") | |
| if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): | |
| st.warning("Load a Titan first! ⚠️") | |
| else: | |
| if isinstance(st.session_state['builder'], ModelBuilder): | |
| st.subheader("NLP Tune 🧠") | |
| uploaded_csv = st.file_uploader("Upload CSV", type="csv", key="nlp_csv") | |
| if uploaded_csv and st.button("Tune NLP 🔄"): | |
| logger.info("Initiating NLP fine-tune") | |
| try: | |
| with open("temp.csv", "wb") as f: | |
| f.write(uploaded_csv.read()) | |
| st.session_state['builder'].fine_tune("temp.csv") | |
| st.success("NLP sharpened! 🎉") | |
| except Exception as e: | |
| st.error(f"NLP fine-tune failed: {str(e)}") | |
| elif isinstance(st.session_state['builder'], DiffusionBuilder): | |
| st.subheader("CV Tune 🎨") | |
| captured_images = get_gallery_files(["png"]) | |
| if len(captured_images) >= 2: | |
| texts = ["Superhero Neon", "Hero Glow", "Cape Spark"][:len(captured_images)] | |
| if st.button("Tune CV 🔄"): | |
| logger.info("Initiating CV fine-tune") | |
| try: | |
| from PIL import Image | |
| images = [Image.open(img) for img in captured_images] | |
| st.session_state['builder'].fine_tune(images, texts) | |
| st.success("CV polished! 🎉") | |
| except Exception as e: | |
| st.error(f"CV fine-tune failed: {str(e)}") | |
| else: | |
| st.warning("Capture at least 2 images first! ⚠️") | |
| with tab4: | |
| st.header("Test Titans 🧪 (Image Agent Demo!)") | |
| if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): | |
| st.warning("Load a Titan first! ⚠️") | |
| else: | |
| if isinstance(st.session_state['builder'], ModelBuilder): | |
| st.subheader("NLP Test 🧠") | |
| prompt = st.text_area("Prompt", "What’s a superhero?", key="nlp_test") | |
| if st.button("Test NLP ▶️"): | |
| logger.info("Running NLP test") | |
| try: | |
| result = st.session_state['builder'].evaluate(prompt) | |
| st.write(f"**Answer**: {result}") | |
| except Exception as e: | |
| st.error(f"NLP test failed: {str(e)}") | |
| elif isinstance(st.session_state['builder'], DiffusionBuilder): | |
| st.subheader("CV Test 🎨 (Image Set Demo)") | |
| captured_images = get_gallery_files(["png"]) | |
| if len(captured_images) >= 2: | |
| if st.button("Run CV Demo ▶️"): | |
| logger.info("Running CV image set demo") | |
| try: | |
| from PIL import Image | |
| images = [Image.open(img) for img in captured_images[:10]] | |
| prompts = ["Neon " + os.path.basename(img).split('.')[0] for img in captured_images[:10]] | |
| generated_images = [] | |
| for prompt in prompts: | |
| img = st.session_state['builder'].generate(prompt) | |
| generated_images.append(img) | |
| cols = st.columns(2) | |
| for idx, (orig, gen) in enumerate(zip(images, generated_images)): | |
| with cols[idx % 2]: | |
| st.image(orig, caption=f"Original: {captured_images[idx]}", use_container_width=True) | |
| st.image(gen, caption=f"Generated: {prompts[idx]}", use_container_width=True) | |
| md_content = "# Image Set Demo\n\nScript of filenames and descriptions:\n" | |
| for i, (img, prompt) in enumerate(zip(captured_images[:10], prompts)): | |
| md_content += f"{i+1}. `{img}` - {prompt}\n" | |
| md_filename = f"demo_metadata_{int(time.time())}.md" | |
| with open(md_filename, "w") as f: | |
| f.write(md_content) | |
| st.markdown(get_download_link(md_filename, "text/markdown", "Download Metadata .md"), unsafe_allow_html=True) | |
| logger.info("CV demo completed with metadata") | |
| except Exception as e: | |
| st.error(f"CV demo failed: {str(e)}") | |
| logger.error(f"Error in CV demo: {str(e)}") | |
| else: | |
| st.warning("Capture at least 2 images first! ⚠️") | |
| # Display Logs | |
| st.sidebar.subheader("Action Logs 📜") | |
| log_container = st.sidebar.empty() | |
| with log_container: | |
| for record in log_records: | |
| st.write(f"{record.asctime} - {record.levelname} - {record.message}") | |
| update_gallery() # Initial gallery update |